X-ray absorption and X-ray emission spectroscopy: theory and applications
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester, West Sussex
Wiley
[2016]
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | 2 Bände 26 cm |
ISBN: | 9781118844236 |
Internformat
MARC
LEADER | 00000nam a2200000 ca4500 | ||
---|---|---|---|
001 | BV043478952 | ||
003 | DE-604 | ||
005 | 20170206 | ||
007 | t | ||
008 | 160324s2016 |||| 00||| eng d | ||
020 | |a 9781118844236 |c hbk. |9 978-1-118-84423-6 | ||
035 | |a (DE-599)BSZ462255360 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
084 | |a UQ 5600 |0 (DE-625)146528: |2 rvk | ||
084 | |a VG 8970 |0 (DE-625)147234:253 |2 rvk | ||
084 | |a WC 2700 |0 (DE-625)148072: |2 rvk | ||
245 | 1 | 0 | |a X-ray absorption and X-ray emission spectroscopy |b theory and applications |c edited by Jeroen A. van Bokhoven (Swiss Light Source, Paul Scherrer Institute, Switzerland; Institute for Chemical and Bioengineering, ETH Zurich, Switzerland); Carlo Lamberti (Department of Chemistry, University of Turin, Italy; Southern Federal University, Rostov-on-Don, Russia) |
264 | 1 | |a Chichester, West Sussex |b Wiley |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 2 Bände |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Spektralanalyse |0 (DE-588)4132368-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Röntgenspektroskopie |0 (DE-588)4050331-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Röntgenspektroskopie |0 (DE-588)4050331-8 |D s |
689 | 0 | 1 | |a Spektralanalyse |0 (DE-588)4132368-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bokhoven, Jeroen Anton van |d 1971- |0 (DE-588)140135987 |4 edt | |
700 | 1 | |a Lamberti, Carlo |d 1964-2019 |0 (DE-588)1043997113 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028895753 |
Datensatz im Suchindex
_version_ | 1807956386555887616 |
---|---|
adam_text |
Contents
VOLUME I
ft
List of Contributors xvii
Foreword xxi
Diek C. Koningsberger and Roel Prins
I INTRODUCTION: HISTORY, XAS, XES, AND THEIR IMPACT ON SCIENCE
1 Introduction: Historical Perspective on XAS 3
Carlo Lamberti and Jeroen A. van Bokhoven
1.1 Historical Overview of 100 Years of X-Ray Absorption: A Focus on the Pioneering
1913-1971 Period 3
1.2 About the Book: A Few Curiosities, Some Statistics, and a Brief Overview 9
Acknowledgement 13
References 14
II EXPERIMENT AND THEORY
2 From Synchrotrons to FELs: How Photons Are Produced; Beamline Optics and Beam
Characteristics 25
Giorgio Margaritondo
2.1 Photon Emission by Accelerated Charges: From the Classical Case to the Relativistic
Limit 25
2.2 Undulators, Wigglers, and Bending Magnets 29
2.2.1 Undulators 29
2.2.2 Wigglers 32
2.2.3 Bending magnets 33
2.2.4 High flux, high brightness 35
2.3 The Time Structure of Synchrotron Radiation 36
2.4 Elements of Beamline Optics 38
2.4.1 Focusing devices 38
2.4.2 Monochromators 41
2.4.3 Detectors 43
2.5 Free Electron Lasers 44
2.5.1 FEL optical amplification 46
2.5.2 Optical amplification in an X-FEL: Details 46
2.5.3 Saturation 47
2.5.4 X-FEL time structure: New opportunities for spectroscopy 48
2.5.5 Time coherence and seeding 48
References 49
vi Contents
3 Real-Space Multiple-Scattering Theory of X-Ray Spectra 51
Joshua J. Kas, Kevin Jorisson and John J. Rehr
3.1 Introduction 51
3.2 Theory 53
3.2.1 Independent-particle approximation 53
3.2.2 Real-space multiple-scattering theory 54
3.2.3 Many body effects in x-ray spectra 57
3.3 Applications 60
3.3.1 XAS, EXAFS, XANES 61
3.3.2 EELS 62
3.3.3 XES 63
3.3.4 XMCD 64
3.3.5 NRIXS 64
3.3.6 RIXS 65
3.3.7 Compton scattering 66
3.3.8 Optical constants 66
3.4 Conclusion 66
References 68
4 Theory of X-Ray Absorption Near Edge Structure 73
Yves Joly and Stéphane Grenier
4.1 Introduction 73
4.2 The X-Ray Absorption Phenomena 74
4.2.1 Probing material 74
4.2.2 The different spectroscopies 76
4.3 X-Ray Matter Interaction 78
4.3.1 Interaction Hamiltonian 78
4.3.2 Absorption cross-section for the transition between two states 78
4.3.3 State description 80
4.3.4 The transition matrix 81
4.4 XANES General Formulation 83
4.4.1 Interaction times and the multi-electronic problem 83
4.4.2 Absorption cross-section main equation 84
4.5 XANES Simulations in the Mono-Electronic Scheme 85
4.5.1 From multi- to mono-electronic 85
4.5.2 The different methods 87
4.5.3 The multiple scattering theory 89
4.6 Multiplet Ligand Field Theory 91
4.6.1 Atomic multiplets 91
4.6.2 The crystal field 92
4.7 Current Theoretical Developments 92
4.8 Tensorial Approaches 93
4.9 Conclusion 94
References 95
5 How to Start an XAS Experiment 99
Diego Gianolio
5.1 Introduction 99
5.2 Plan the Experiment 100
Contents vH
5.2.1 Identify the scientific question 101
5.2.2 Can XAS solve the problem? 103
5.2.3 Select the best beamline and measurement mode 104
5.2.4 Writing the proposal 111
5.3 Preparing the Experiment 112
5.3.1 Experimental design 112
5.3.2 Best sample conditions for data acquisition 113
5.3.3 Sample preparation 116
5.4 Performing the Experiment 118
5.4.1 Initial set-up and optimization of signal 118
5.4.2 Data acquisition 119
References 122
6 Hard X-Ray Photon-in/Photon-out Spectroscopy: Instrumentation, Theory and
Applications 125
Pieter Glatzel, Roberto Alonso-Mori, and Dimosthenis Sokaras
6.1 Introduction 125
6.2 History 126
6.3 Basic Theory of XES 126
6.3.1 One- and multi-electron description 128
6.3.2 X-ray Raman scattering spectroscopy 132
6.4 Chemical Sensitivity of X-Ray Emission 133
6.4.1 Core-to-core transitions 133
6.4.2 Valence-to-core transitions 134
6.5 HERFDandRIXS 135
6.6 Experimental X-Ray Emission Spectroscopy 137
6.6.1 Sources for x-ray emission spectroscopy 137
6.6.2 X-ray emission spectrometers 140
6.6.3 Detectors 147
6.7 Conclusion 149
References 149
7 QEXAFS: Techniques and Scientific Applications for Time-Resolved XAS 155
Maarten Nachtegaal, Oliver Müller, Christian König and Ronald Frahm
7.1 Introduction 155
7.2 History and Basics of QEXAFS 156
7.3 Monochromators and Beamlines for QEXAFS 158
7.3.1 QEXAFS with conventional monochromators 158
7.3.2 Piezo-QEXAFS for the millisecond time range 161
7.3.3 Dedicated oscillating monochromators for QEXAFS 162
7.4 Detectors and Readout Systems 166
7.4.1 Requirements for detectors 167
7.4.2 Gridded ionization chambers 167
7.4.3 Data acquisition 169
7.4.4 Angular encoder 171
7.5 Applications of QEXAFS in Chemistry 172
7.5.1 Following the fate of metal contaminants at the mineral-water interface 173
7.5.2 Identifying the catalytic active sites in gas phase reactions 174
7.5.3 Identifying the catalytic active site in liquid phase reactions 175
176
177
179
180
180
185
185
186
186
186
188
189
191
191
191
194
196
199
200
200
202
204
205
206
206
206
207
208
209
209
213
213
214
214
218
220
220
224
225
225
226
227
Contents
7.5.4 Synthesis of nanoparticles
7.5.5 Identification of reaction intermediates: Modulation excitation XAS
7.6 Conclusion and Future Perspectives
Acknowledgements
References
Time-Resolved XAS Using an Energy Dispersive Spectrometer: Techniques and
Applications
Olivier Mathon, Innokenty Kantor and Sakura Pascarelli
8.1 Introduction
8.2 Energy Dispersive X-Ray Absorption Spectroscopy
8.2.1 Historical development of EDXAS and overview of existing facilities
8.2.2 Principles: Source, optics, detection
8.2.3 Dispersive versus scanning spectrometer for time-resolved experiments
8.2.4 Description of the EDXAS beamline at ESRF
8.3 From the Minute Down to the Ms: Filming a Chemical Reaction in situ
8.3.1 Technical aspects
8.3.2 First stages of nanoparticle formation
8.3.3 Working for cleaner cars: Automotive exhaust catalyst
8.3.4 Reaction mechanisms and intermediates
8.3.5 High temperature oxidation of metallic iron
8.4 Down to the fis Regime: Matter under Extreme Conditions
8.4.1 Technical aspects
8.4.2 Melts at extreme pressure and temperature
8.4.3 Spin transitions at high magnetic field
8.4.4 Fast ohmic ramp excitation towards the warm dense matter regime
8.5 Playing with a 100 ps Single Bunch
8.5.1 Technical aspects
8.5.2 Detection and characterization of photo-excited states in Cu+ complexes
8.5.3 Opportunities for investigating laser-shocked matter
8.5.4 Non-synchrotron EDXAS
8.6 Conclusion
References
X-Ray Transient Absorption Spectroscopy
LinX. Chen
9.1 Introduction
9.2 Pump-Probe Spectroscopy
9.2.1 Background
9.2.2 The basic set-up
9.3 Experimental Considerations
9.3.1 XTA at a synchrotron source
9.3.2 XTA at x-ray free electron laser sources
9.4 Transient Structural Information Investigated by XTA
9.4.1 Metal center oxidation state
9.4.2 Electron configuration and orbital energies of x-ray absorbing atoms
9.4.3 Transient coordination geometry of the metal center
Contents ix
9.5 X-Ray Pump-Probe Absorption Spectroscopy: Examples 228
9.5.1 Excited state dynamics of transition metal complexes (TMCs) 228
9.5.2 Interfacial charge transfer in hybrid systems 232
9.5.3 XTA studies of metal center active site structures in metalloproteins 235
9.5.4 XTA using the x-ray free electron lasers 237
9.5.5 Other XTA application examples 239
9.6 Perspective of Pump-Probe X-Ray Spectroscopy 239
Acknowledgments 240
References 241
10 Space-Resolved XAFS, Instrumentation and Applications 251
Yoshio Suzuki and Yasuko Terada
10.1 Space-Resolving Techniques for XAFS 251
10.2 Beam-Focusing Instrumentation for Microbeam Production 253
10.2.1 Total reflection mirror systems 253
10.2.2 Fresnel zone plate optics for x-ray microbeam 257
10.2.3 General issues of beam-focusing optics 260
10.2.4 Requirements on beam stability in microbeam XAFS experiments 265
10.3 Examples of Beam-Focusing Instrumentation 266
10.3.1 The total-reflection mirror system 266
10.3.2 Fresnel zone plate system 267
10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and
Environmental Science 268
10.4.1 Speciation of heavy metals in willow 268
10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary
iron deposit 270
10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 272
10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 274
10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 274
10.5 Conclusion and Outlook 275
References 278
11 Quantitative EXAFS Analysis 281
Bruce Ravel
11.1 A brief history of EXAFS theory 282
11.1.1 The n-body decomposition in GNXAS 286
11.1.2 The exact curved wave theory in EXCURVE 286
11.1.3 The path expansion in FEFF 287
11.2 Theoretical calculation of EXAFS scattering factors 287
11.2.1 The pathfinder 288
11.2.2 The fitting metric 289
11.2.3 Constraints on parameters of the fit 290
11.2.4 Fitting statistics 291
11.2.5 Extending the evaluation of x1 294
11.2.6 Other analytic methods 295
11.3 Practical examples of EXAFS analysis 296
11.3.1 Geometric constraints on bond lengths 296
x Contents
11.3.2 Constraints on the coordination environment 297
11.3.3 Constraints and multiple data set analysis 298
11.4 Conclusion 299
References 299
12 XAS Spectroscopy: Related Techniques and Combination with Other Spectroscopic and
Scattering Methods 303
Carlo Lamberti, Elisa Borfecchia, Jeroen A. van Bokhoven and Marcos Fernandez-Garcia
12.1 Introduction 303
12.2 Atomic Pair Distribution Analysis of Total Scattering Data 304
12.2.1 Theoretical description 307
12.2.2 Examples of PDF analysis 311
12.3 Diffraction Anomalous Fine Structure (DAFS) 316
12.3.1 Theoretical description 316
12.3.2 Examples of DAFS 318
12.4 Inelastic Scattering Techniques 323
12.4.1 Extended energy-loss fine structure (EXELFS) 323
12.4.2 X-ray Raman scattering (XRS) 323
12.5 ^-Environmental Fine Structure (BEFS) 324
12.6 Combined Techniques 330
12.6.1 General considerations 330
12.6.2 Selected examples 332
12.7 Conclusion 337
Acknowledgments 337
References 337
VOLUME II
List of Contributors xvii
Foreword xxi
Diek C. Koningsberger and Roel Prins
III APPLICATIONS: FROM CATALYSIS VIA SEMICONDUCTORS TO INDUSTRIAL
APPLICATIONS
13 X-Ray Absorption and Emission Spectroscopy for Catalysis 353
Carlo Lamberti and Jeroen A. van Bokhoven
13.1 Introduction 353
13.2 The Catalytic Process 354
13.2.1 From vacuum and single crystals to realistic pressure and relevant samples 355
13.2.2 From chemisorption to conversion and reaction kinetics 356
13.2.3 Structural differences within a single catalytic reactor 358
13.2.4 Determining the structure of the active site 360
13.3 Reaction Kinetics from Time-Resolved XAS 361
13.3.1 Oxygen storage materials 361
13.3.2 Selective propene oxidation over a-MoO3 362
13.3.3 Active sites of the dream reaction, the direct conversion of benzene to phenol 365
Contents xi
13.4 Sub-Micrometer Space Resolved Measurements 368
13.5 Emerging Methods 369
13.5.1 X-ray emission spectroscopy 369
13.5.2 Pump probe methods 374
13.6 Conclusion and Outlook 374
Acknowledgement 375
References 375
14 High Pressure XAS, XMCD and IXS 385
Jean-Paul Itié François Baudelet and Jean-Pascal Rueff
14.1 Introduction 385
14.1.1 Why pressure matters 385
14.1.2 High-pressure generation and measurements 385
14.1.3 Specific drawbacks of a high-pressure set-up 386
14.2 High Pressure EXAFS and XANES 386
14.2.1 Introduction 386
14.2.2 Local equation of state 386
14.2.3 Pressure-induced phase transitions 387
14.2.4 Glasses, amorphous materials, amorphization 390
14.2.5 Extension to low and high energy edges 392
14.3 High-Pressure Magnetism and XMCD 393
14.3.1 Introduction 393
14.3.2 Transition metal 394
14.3.3 Magnetic insulator 396
14.3.4 The rare earth system 396
14.4 High Pressure Inelastic X-Ray Scattering 397
14.4.1 Electronic structure 397
14.4.2 Magnetic transitions in 3d and 4f electron systems 397
14.4.3 Metal insulator transitions in correlated systems 398
14.4.4 Valence transition in mixed valent rare-earth compounds 399
14.4.5 Low-energy absorption edges: chemical bonding and orbital configuration 400
14.5 Conclusion 401
References 402
15 X-Ray Absorption and RIXS on Coordination Complexes 407
Thomas Kroll, Marcus Lundberg and Edward /. Solomon
15.1 Introduction 407
15.1.1 Geometric and electronic structure of coordination complexes 407
15.1.2 X-ray probes of coordination complexes 409
15.1.3 Extracting electronic structure from x-ray spectra 411
15.2 Metal K-Edges 413
15.2.1 The case of a single 3d hole: Cu(II) 414
15.2.2 Multiple 3d holes: Fe(III) and Fe(II) 418
15.3 Metal L-Edges 420
15.3.1 The case of a single 3d hole: Cu(II) 421
15.3.2 Multiple 3d holes: Fe(III) and Fe(II) 423
15.4 Resonant Inelastic X-Ray Scattering 427
15.4.1 Ferrous systems 429
15.4.2 Ferric systems 431
xii Contents
15.5 Conclusion 432
Acknowledgments 433
References 433
16 Semiconductors 437
Federico Boscherini
16.1 Introduction 437
16.2 XAS Instrumental Aspects 437
16.3 Applications 439
16.3.1 Dopants and defects 439
16.3.2 Thin films and heterostructures 447
16.3.3 Nanostructures 448
16.3.4 Dilute magnetic semiconductors 451
16.4 Conclusion 455
References 455
17 XAS Studies on Mixed Valence Oxides 459
Joaquin Garcia, Gloria Subias and Javier Blasco
17.1 Introduction 459
17.1.1 X-ray absorption spectroscopy (XAS) 461
17.1.2 XES and XAS 463
17.1.3 Resonant x-ray scattering 464
17.2 Solid State Applications (Mixed Valence Oxides) 464
17.2.1 High Tc superconductors 464
17.2.2 Manganites 470
17.2.3 Perovskite cobaltites 479
17.3 Conclusion 480
References 481
18 Novel XAS Techniques for Probing Fuel Cells and Batteries 485
David E. Ramaker
18.1 Introduction 485
18.2 XANES Techniques 487
18.2.1 Data analysis 489
18.2.2 Data collection 490
18.2.3 Comparison of techniques by examination of 0(H)/Pt and CO/Pt 493
18.3 Operando Measurements 500
18.3.1 Fuel cells 500
18.3.2 Batteries 505
18.4 Future Trends 511
18.5 Appendix 511
18.5.1 Details of the isp XANES analysis technique 511
18.5.2 FEFF8 theoretical calculations 513
References 515
19 X-Ray Spectroscopy in Studies of the Nuclear Fuel Cycle 523
Melissa A. Denecke
19.1 Background 523
19.1.1 Introduction 523
19.1.2 Radioactive materials at synchrotron sources 527
Contents xiii
19.2 Application Examples 530
19.2.1 Studies related to uranium mining 530
19.2.2 Studies related to fuel 532
19.2.3 Investigations of reactor components 538
19.2.4 Studies related to recycle and lanthanide/actinide separations 540
19.2.5 Studies concerning legacy remediation and waste disposal (waste forms,
near-field and far-field) 544
19.3 Conclusion and Outlook 551
References 555
20 Planetary, Geological and Environmental Sciences 561
François Farges and Max Wilke
20.1 Introduction 561
20.2 Planetary and Endogenous Earth Sciences 563
20.2.1 Planetary materials and meteorites 563
20.2.2 Crystalline deep earth materials 566
20.2.3 Magmatic and volcanic processes 571
20.2.4 Element complexation in aqueous fluids at P and T 579
20.3 Environmental Geosciences 581
20.3.1 General trends 581
20.3.2 Environmentally relevant minerals and phases 583
20.3.3 Mechanisms and reactivity at the mineral-water interfaces 584
20.3.4 Some environmental applications of x-ray absorption spectroscopy 591
20.4 Conclusion 599
Acknowledgments 600
References 600
21 X-Ray Absorption Spectroscopy and Cultural Heritage: Highlights and Perspectives 609
François Farges and Marine Cotte
21.1 Introduction 609
21.2 Instrumentation: Standard and Recently Developed Approaches 610
21.2.1 From centimetric objects to micrometric cross-sections 610
21.2.2 Improving the spectral resolution of XRF detectors 612
21.2.3 From hard x-rays to soft x-rays 612
21.2.4 Spectro-imaging in the hard x-ray domain 613
21.3 Some Applications 614
21.3.1 Glasses 614
21.3.2 Ceramics 621
21.3.3 Pigments and paintings 623
21.3.4 Inks 626
21.3.5 Woods: From historical to fossils 627
21.3.6 Bones and ivory 628
21.3.7 Metals 629
21.3.8 Rock-formed monuments 632
21.4 Conclusion 632
Acknowledgments 633
References 633
637
637
637
638
641
641
642
642
645
646
647
649
652
653
654
656
656
656
658
659
660
660
662
662
671
671
673
677
677
680
682
683
684
684
686
688
689
690
690
695
695
696
Contents
X-Ray Spectroscopy at Free Electron Lasers
Wojciech Gawelda, Jakub Szlachetko and Christopher J. Milne
22.1 Introduction to X-Ray Free Electron Lasers in Comparison to Synchrotrons
22.1.1 Overview of facilities
22.1.2 X-ray properties from an XFEL
22.1.3 Scanning the x-ray energy
22.1.4 Comparison with existing time-resolved techniques at synchrotrons
22.2 Current Implementations of X-Ray Spectroscopy Techniques at XFELs
22.2.1 X-ray absorption spectroscopy
22.2.2 X-ray emission spectroscopy
22.3 Examples of Time-Resolved X-Ray Spectroscopy at XFELs
22.3.1 Ultrafast spin-crossover excitation probed with x-ray absorption spectroscopy
22.3.2 Femtosecond spin and charge state dynamics probed with x-ray emission
spectroscopy
22.3.3 Simultaneous measurement of the structural and electronic changes in
Photosystem II after photoexcitation
22.3.4 Investigating surface photochemistry
22.3.5 Soft x-ray emission spectroscopy measurements of dilute systems
22.4 Examples of Nonlinear X-Ray Spectroscopy at XFELs
22.4.1 X-ray-induced transparency
22.4.2 Sequential ionization and core-to-core resonances
22.4.3 Hollow atoms
22.4.4 Solid-density plasma
22.4.5 Two-photon absorption
22.5 Conclusion and Outlook
Acknowledgement
References
X-Ray Magnetic Circular Dichroism
Andrei Rogalev; Katharina Ollefs and Fabrice Wilhelm
23.1 Historical Introduction
23.2 Physical Content of XMCD and the Sum Rules
23.3 Experimental Aspects and Data Analysis
23.3.1 Sources of circularly polarized x-rays
23.3.2 Sample environment
23.3.3 Detection modes
23.3.4 Standard analysis
23.4 Examples of Recent Research
23.4.1 Paramagnetism of pure metallic clusters
23.4.2 Magnetism in diluted magnetic semiconductors
23.4.3 Photomagnetic molecular magnets
23.5 Conclusion and Outlook
Acknowledgments
References
Industrial Applications
Simon R. Bare and Jeffrey Cutler
24.1 Introduction
24.2 The Patent Literature
Contents xv
24.2.1 Catalysts 696
24.2.2 Batteries 698
24.2.3 Other applications 699
24.3 The Open Literature 699
24.3.1 Semiconductors, thin films, and electronic materials 700
24.3.2 Fuel cells, batteries, and electrocatalysts 703
24.3.3 Metallurgy and tribology 708
24.3.4 Homogeneous and heterogeneous catalysts 710
24.3.5 Miscellaneous applications: from sludge to thermographic films 715
24.4 Examples of Applications from Light Sources 716
24.4.1 Introduction 716
24.4.2 Industrial science at the Canadian Light Source 716
24.4.3 Use of SOLEIL beamlines by industry 719
24.4.4 Industrial research enhancement program at NSLS 721
24.4.5 The Swiss Light Source: cutting-edge research facilities for industry 721
24.5 Examples of Applications from Companies 724
24.5.1 Introduction 724
24.5.2 Haldor Topspe AIS 724
24.5.3 UOP LLC, a Honeywell Company 726
24.5.4 General Electric Company 729
24.5.5 IBM Research Center 733
24.6 Conducting Industrial Research at Light Sources 735
24.7 Conclusion and Outlook 736
Acknowledgements 737
References 737
25 XAS in Liquid Systems 745
Adriano Filipponi and Paola D Angelo
25.1 The Liquid State of Matter 745
25.1.1 Thermodynamic considerations 745
25.1.2 Pair and higher order distribution functions 747
25.2 Computer Modelling of Liquid Structures 749
25.2.1 Molecular dynamics simulations 749
25.2.2 Classical molecular dynamics 750
25.2.3 Bom-Oppenheimer molecular dynamics 752
25.2.4 Car-Parrinello molecular dynamics 752
25.2.5 Monte Carlo simulation approaches 753
25.3 XAFS Calculations in Liquids/Disordered Systems 754
25.3.1 XAFS sensitivity and its specific role 754
25.3.2 XAFS signal decomposition 755
25.3.3 XAFS signal from the pair distribution 757
25.3.4 The triplet distribution case in elemental systems 758
25.4 Experimental and Data-Analysis Approaches 759
25.4.1 Sample confinement strategies and detection techniques 759
25.4.2 High pressure, temperature control, and XAS sensitivity to phase transitions 761
25.4.3 Traditional versus atomistic data-analysis approaches 761
25.5 Examples of Data Analysis Applications 763
25.5.1 Elemental systems: Icosahedral order in metals 763
xvi Contents
25.5.2 Aqueous solutions: Structure of the hydration shells 763
25.5.3 Transition metal aqua ions 765
25.5.4 Lanthanide aqua ions 766
25.5.5 Halide aqua ions: The bromide case 767
References 768
26 Surface Metal Complexes and Their Applications 773
Joseph D. Kistler, Pedro Serna, Kiyotaka Asakura and Bruce C. Gates
26.1 Introduction 773
26.1.1 Ligands other than supports 774
26.1.2 Supports 774
26.1.3 Techniques complementing x-ray absorption spectroscopy 775
26.1.4 Data-fitting techniques 775
26.2 Aim of the Chapter 776
26.3 Mononuclear Iridium Complexes Supported on Zeolite HSSZ-53: Illustration of EXAFS
Data Fitting and Model Discrimination 776
26.4 Iridium Complexes Supported on MgO and on Zeolites: Precisely Synthesized
Isostructural Metal Complexes on Supports with Contrasting Properties as Ligands 782
26.5 Supported Chromium Complex Catalysts for Ethylene Polymerization: Characterization
of Samples Resembling Industrial Catalysts 785
26.6 Copper Complexes on Titania: Insights Gained from Samples Incorporating
Single-Crystal Supports 787
26.7 Gold Complexes Supported on Zeolite NaY: Determining Crystallographic Locations of
Metal Complexes on a Support by Combining EXAFS Spectroscopy and STEM 790
26.8 Gold Supported on Ce02: Conversion of Gold Complexes into Clusters in a CO
Oxidation Catalyst Characterized by Transient XAFS Spectroscopy 792
26.9 Mononuclear Rhodium Complexes and Dimers on MgO: Discovery of a Catalyst for
Selective Hydrogenation of 1,3-Butadiene 797
26.10 Osmium Complexes Supported on MgO: Determining Structure of the Metal-Support
Interface, and the Importance of Support Surface Defect Sites 800
26.11 Conclusion 805
Acknowledgments 805
References 805
27 Nanostructured Materials 809
Alexander V Soldatov and Kirill A. Lomachenko
27.1 Introduction 809
27.2 Small Nanoclusters 811
27.3 Nanoparticles 814
27.4 Nanostructures and Defects in Solids 819
27.5 Conclusion and Outlook 824
Acknowledgments 824
References 824
Index 829
r i
X-Ray Absorption
and X-Ray Emission Spectroscopy
Theory and Applications
EDITED BY
JEROEN A. VAN BOKHOVEN
Swiss Light Source, Paul Scherrer Institute, Switzerland
Institute for Chemical and Bioengineering, ETH Zurich, Switzerland
CARLO LAMBERTI
Department of Chemistry, University of Turin, Italy
Department of Physics, Southern Federal University, Russia
During the last two decades, remarkable and, at times, spectacular progress has been made in the
methodological and instrumental aspects of X-ray absorption spectroscopy (XAS) and X-ray emission
spectroscopy (XES), including improvements in the design of the beam line, the development of detectors and,
in particular, the development and expansion of large-scale synchrotrons. This has resulted in more efficient
analytical performance and new applications, as well as an impressive enhancement of the potential of analytical
techniques based on X-rays.
Presented in two volumes, this comprehensive book includes articles which explain the phenomena, methods,
instrumentation, and potential multi-disciplinary applications of X-ray absorption and emission techniques in
fields such as chemistry, catalysis, coordination chemistry, electrochemistry, nuclear materials, nanomaterials,
semiconductors, solid state physics, amorphous and liquid systems, synchrotron radiation, environmental
science, cultural heritage, and surface phenomena. Contributions from some of the most authoritative scientists
in the field explain the underlying theory of how to set up X-ray absorption experiments and how to conduct
a detailed analysis of the resulting spectra. X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and
Applications combines the theory, instrumentation and application of unique diagnostic tools for the study of
matter in any of its appearances.
This practical, useful and accessible textbook is a vital resource for graduate and postgraduate students who are
studying or have an interest in the X-ray spectroscopy of matter, and is the ideal reference book for researchers
in multiple fields of research at universities, synchrotron facilities, research institutes and in industry.
ISBN 978-1-118-84423-6 |
any_adam_object | 1 |
author2 | Bokhoven, Jeroen Anton van 1971- Lamberti, Carlo 1964-2019 |
author2_role | edt edt |
author2_variant | j a v b jav javb c l cl |
author_GND | (DE-588)140135987 (DE-588)1043997113 |
author_facet | Bokhoven, Jeroen Anton van 1971- Lamberti, Carlo 1964-2019 |
building | Verbundindex |
bvnumber | BV043478952 |
classification_rvk | UQ 5600 VG 8970 WC 2700 |
ctrlnum | (DE-599)BSZ462255360 |
discipline | Chemie / Pharmazie Physik Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 ca4500</leader><controlfield tag="001">BV043478952</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170206</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160324s2016 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118844236</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-118-84423-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ462255360</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 5600</subfield><subfield code="0">(DE-625)146528:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 8970</subfield><subfield code="0">(DE-625)147234:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 2700</subfield><subfield code="0">(DE-625)148072:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">X-ray absorption and X-ray emission spectroscopy</subfield><subfield code="b">theory and applications</subfield><subfield code="c">edited by Jeroen A. van Bokhoven (Swiss Light Source, Paul Scherrer Institute, Switzerland; Institute for Chemical and Bioengineering, ETH Zurich, Switzerland); Carlo Lamberti (Department of Chemistry, University of Turin, Italy; Southern Federal University, Rostov-on-Don, Russia)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, West Sussex</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">2 Bände</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektralanalyse</subfield><subfield code="0">(DE-588)4132368-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Röntgenspektroskopie</subfield><subfield code="0">(DE-588)4050331-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Röntgenspektroskopie</subfield><subfield code="0">(DE-588)4050331-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektralanalyse</subfield><subfield code="0">(DE-588)4132368-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bokhoven, Jeroen Anton van</subfield><subfield code="d">1971-</subfield><subfield code="0">(DE-588)140135987</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamberti, Carlo</subfield><subfield code="d">1964-2019</subfield><subfield code="0">(DE-588)1043997113</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028895753</subfield></datafield></record></collection> |
id | DE-604.BV043478952 |
illustrated | Not Illustrated |
indexdate | 2024-08-21T00:52:50Z |
institution | BVB |
isbn | 9781118844236 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028895753 |
open_access_boolean | |
physical | 2 Bände 26 cm |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Wiley |
record_format | marc |
spelling | X-ray absorption and X-ray emission spectroscopy theory and applications edited by Jeroen A. van Bokhoven (Swiss Light Source, Paul Scherrer Institute, Switzerland; Institute for Chemical and Bioengineering, ETH Zurich, Switzerland); Carlo Lamberti (Department of Chemistry, University of Turin, Italy; Southern Federal University, Rostov-on-Don, Russia) Chichester, West Sussex Wiley [2016] © 2016 2 Bände 26 cm txt rdacontent n rdamedia nc rdacarrier Spektralanalyse (DE-588)4132368-3 gnd rswk-swf Röntgenspektroskopie (DE-588)4050331-8 gnd rswk-swf Röntgenspektroskopie (DE-588)4050331-8 s Spektralanalyse (DE-588)4132368-3 s DE-604 Bokhoven, Jeroen Anton van 1971- (DE-588)140135987 edt Lamberti, Carlo 1964-2019 (DE-588)1043997113 edt Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | X-ray absorption and X-ray emission spectroscopy theory and applications Spektralanalyse (DE-588)4132368-3 gnd Röntgenspektroskopie (DE-588)4050331-8 gnd |
subject_GND | (DE-588)4132368-3 (DE-588)4050331-8 |
title | X-ray absorption and X-ray emission spectroscopy theory and applications |
title_auth | X-ray absorption and X-ray emission spectroscopy theory and applications |
title_exact_search | X-ray absorption and X-ray emission spectroscopy theory and applications |
title_full | X-ray absorption and X-ray emission spectroscopy theory and applications edited by Jeroen A. van Bokhoven (Swiss Light Source, Paul Scherrer Institute, Switzerland; Institute for Chemical and Bioengineering, ETH Zurich, Switzerland); Carlo Lamberti (Department of Chemistry, University of Turin, Italy; Southern Federal University, Rostov-on-Don, Russia) |
title_fullStr | X-ray absorption and X-ray emission spectroscopy theory and applications edited by Jeroen A. van Bokhoven (Swiss Light Source, Paul Scherrer Institute, Switzerland; Institute for Chemical and Bioengineering, ETH Zurich, Switzerland); Carlo Lamberti (Department of Chemistry, University of Turin, Italy; Southern Federal University, Rostov-on-Don, Russia) |
title_full_unstemmed | X-ray absorption and X-ray emission spectroscopy theory and applications edited by Jeroen A. van Bokhoven (Swiss Light Source, Paul Scherrer Institute, Switzerland; Institute for Chemical and Bioengineering, ETH Zurich, Switzerland); Carlo Lamberti (Department of Chemistry, University of Turin, Italy; Southern Federal University, Rostov-on-Don, Russia) |
title_short | X-ray absorption and X-ray emission spectroscopy |
title_sort | x ray absorption and x ray emission spectroscopy theory and applications |
title_sub | theory and applications |
topic | Spektralanalyse (DE-588)4132368-3 gnd Röntgenspektroskopie (DE-588)4050331-8 gnd |
topic_facet | Spektralanalyse Röntgenspektroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028895753&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bokhovenjeroenantonvan xrayabsorptionandxrayemissionspectroscopytheoryandapplications AT lamberticarlo xrayabsorptionandxrayemissionspectroscopytheoryandapplications |