Machine Learning in Complex Networks:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
2016
|
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHM01 FHN01 FHR01 FKE01 FRO01 HTW01 UBG01 UBM01 UBR01 UBT01 UBW01 UER01 UPA01 Volltext Abstract Inhaltsverzeichnis |
Beschreibung: | 1 Online-Ressource (XVIII, 331 Seiten) 87 illus., 80 illus. in color |
ISBN: | 9783319172903 |
DOI: | 10.1007/978-3-319-17290-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043407798 | ||
003 | DE-604 | ||
005 | 20160712 | ||
007 | cr|uuu---uuuuu | ||
008 | 160225s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783319172903 |c Online |9 978-3-319-17290-3 | ||
024 | 7 | |a 10.1007/978-3-319-17290-3 |2 doi | |
035 | |a (OCoLC)936871627 | ||
035 | |a (DE-599)BVBBV043407798 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-Aug4 |a DE-898 |a DE-M347 |a DE-573 |a DE-859 |a DE-703 |a DE-473 |a DE-29 |a DE-20 |a DE-739 |a DE-634 |a DE-92 |a DE-861 |a DE-523 |a DE-355 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Silva, Thiago Christiano |e Verfasser |0 (DE-588)1094892076 |4 aut | |
245 | 1 | 0 | |a Machine Learning in Complex Networks |c by Thiago Christiano Silva, Liang Zhao |
264 | 1 | |a Cham |b Springer |c 2016 | |
300 | |a 1 Online-Ressource (XVIII, 331 Seiten) |b 87 illus., 80 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Science | |
650 | 4 | |a Data mining | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Pattern recognition | |
650 | 4 | |a Physics | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Complex Networks | |
650 | 4 | |a Science, general | |
650 | 4 | |a Data Mining and Knowledge Discovery | |
650 | 4 | |a Informatik | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensextraktion |0 (DE-588)4546354-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soft Computing |0 (DE-588)4455833-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Soft Computing |0 (DE-588)4455833-8 |D s |
689 | 0 | 2 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 3 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 4 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 5 | |a Wissensextraktion |0 (DE-588)4546354-2 |D s |
689 | 0 | 6 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zhao, Liang |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-17289-7 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-17290-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028826144 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l BTU01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l FHA01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l FHI01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l FHM01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l FHN01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l FHR01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l FKE01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l FRO01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l HTW01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l UBG01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l UBM01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l UBR01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l UBT01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l UBW01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l UER01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-17290-3 |l UPA01 |p ZDB-2-SCS |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175995702345728 |
---|---|
adam_text | MACHINE LEARNING IN COMPLEX NETWORKS
/ CHRISTIANO SILVA, THIAGO
: 2016
ABSTRACT / INHALTSTEXT
THIS BOOK EXPLORES THE FEATURES AND ADVANTAGES OFFERED BY COMPLEX
NETWORKS IN THE DOMAIN OF MACHINE LEARNING. IN THE FIRST PART OF THE
BOOK, WE PRESENT AN OVERVIEW ON COMPLEX NETWORKS AND MACHINE LEARNING.
THEN, WE PROVIDE A COMPREHENSIVE DESCRIPTION ON NETWORK-BASED MACHINE
LEARNING. IN ADDITION, WE ALSO ADDRESS THE IMPORTANT NETWORK
CONSTRUCTION ISSUE. IN THE SECOND PART OF THE BOOK, WE DESCRIBE SOME
TECHNIQUES FOR SUPERVISED, UNSUPERVISED, AND SEMI-SUPERVISED LEARNING
THAT RELY ON COMPLEX NETWORKS TO PERFORM THE LEARNING PROCESS.
PARTICULARLY, WE THOROUGHLY INVESTIGATE A PARTICLE COMPETITION TECHNIQUE
FOR BOTH UNSUPERVISED AND SEMI-SUPERVISED LEARNING THAT IS MODELED USING
A STOCHASTIC NONLINEAR DYNAMICAL SYSTEM. MOREOVER, WE SUPPLY AN
ANALYTICAL ANALYSIS OF THE MODEL, WHICH ENABLES ONE TO PREDICT THE
BEHAVIOR OF THE PROPOSED TECHNIQUE. IN ADDITION, WE DEAL WITH DATA
RELIABILITY ISSUES OR IMPERFECT DATA IN SEMI-SUPERVISED LEARNING.EVEN
THOUGH WITH RELEVANT PRACTICAL IMPORTANCE, LITTLE RESEARCH IS FOUND
ABOUT THIS TOPIC IN THE LITERATURE. IN ORDER TO VALIDATE THESE
TECHNIQUES, WE EMPLOY BROADLY ACCEPTED REAL-WORLD AND ARTIFICIAL DATA
SETS. REGARDING NETWORK-BASED SUPERVISED LEARNING, WE PRESENT A HYBRID
DATA CLASSIFICATION TECHNIQUE THAT COMBINES BOTH LOW AND HIGH ORDERS OF
LEARNING. THE LOW-LEVEL TERM CAN BE IMPLEMENTED BY ANY TRADITIONAL
CLASSIFICATION TECHNIQUE, WHILE THE HIGH-LEVEL TERM IS REALIZED BY THE
EXTRACTION OF TOPOLOGICAL FEATURES OF THE UNDERLYING NETWORK CONSTRUCTED
FROM THE INPUT DATA. THUS, THE FORMER CLASSIFIES TEST INSTANCES
ACCORDING TO THEIR PHYSICAL FEATURES, WHILE THE LATTER MEASURES THE
COMPLIANCE OF TEST INSTANCES WITH THE PATTERN FORMATION OF THE DATA. WE
SHOW THAT THE HIGH-LEVEL TECHNIQUE CAN REALIZE CLASSIFICATION ACCORDING
TO THE SEMANTIC MEANING OF THE DATA.THIS BOOK INTENDS TO COMBINE TWO
WIDELY STUDIED RESEARCH AREAS, MACHINE LEARNING AND COMPLEX NETWORKS,
WHICH IN TURN MAY GENERATE BROAD INTERESTS TO SCIENTIFIC COMMUNITY,
MAINLY TO COMPUTER SCIENCE AND ENGINEERING AREAS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
MACHINE LEARNING IN COMPLEX NETWORKS
/ CHRISTIANO SILVA, THIAGO
: 2016
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
COMPLEX NETWORKS
MACHINE LEARNING
NETWORK CONSTRUCTION TECHNIQUES
NETWORK-BASED SUPERVISED LEARNING
NETWORK-BASED UNSUPERVISED LEARNING
NETWORK-BASED SEMI-SUPERVISED LEARNING
CASE STUDY OF NETWORK-BASED SUPERVISED LEARNING: HIGH-LEVEL DATA
CLASSIFICATION
CASE STUDY OF NETWORK-BASED UNSUPERVISED LEARNING: STOCHASTIC
COMPETITIVE LEARNING IN NETWORKS
CASE STUDY OF NETWORK-BASED SEMI-SUPERVISED LEARNING: STOCHASTIC
COMPETITIVE-COOPERATIVE LEARNING IN NETWORKS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Silva, Thiago Christiano Zhao, Liang |
author_GND | (DE-588)1094892076 |
author_facet | Silva, Thiago Christiano Zhao, Liang |
author_role | aut aut |
author_sort | Silva, Thiago Christiano |
author_variant | t c s tc tcs l z lz |
building | Verbundindex |
bvnumber | BV043407798 |
classification_rvk | ST 302 |
collection | ZDB-2-SCS |
ctrlnum | (OCoLC)936871627 (DE-599)BVBBV043407798 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-319-17290-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04713nmm a2200913zc 4500</leader><controlfield tag="001">BV043407798</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160712 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160225s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319172903</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-17290-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-17290-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)936871627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043407798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silva, Thiago Christiano</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1094892076</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning in Complex Networks</subfield><subfield code="c">by Thiago Christiano Silva, Liang Zhao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 331 Seiten)</subfield><subfield code="b">87 illus., 80 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex Networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining and Knowledge Discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Liang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-17289-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028826144</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-17290-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043407798 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:25:09Z |
institution | BVB |
isbn | 9783319172903 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028826144 |
oclc_num | 936871627 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-Aug4 DE-898 DE-BY-UBR DE-M347 DE-573 DE-859 DE-703 DE-473 DE-BY-UBG DE-29 DE-20 DE-739 DE-634 DE-92 DE-861 DE-523 DE-355 DE-BY-UBR |
owner_facet | DE-19 DE-BY-UBM DE-Aug4 DE-898 DE-BY-UBR DE-M347 DE-573 DE-859 DE-703 DE-473 DE-BY-UBG DE-29 DE-20 DE-739 DE-634 DE-92 DE-861 DE-523 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (XVIII, 331 Seiten) 87 illus., 80 illus. in color |
psigel | ZDB-2-SCS ZDB-2-SCS_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
spelling | Silva, Thiago Christiano Verfasser (DE-588)1094892076 aut Machine Learning in Complex Networks by Thiago Christiano Silva, Liang Zhao Cham Springer 2016 1 Online-Ressource (XVIII, 331 Seiten) 87 illus., 80 illus. in color txt rdacontent c rdamedia cr rdacarrier Computer science Science Data mining Artificial intelligence Pattern recognition Physics Artificial Intelligence (incl. Robotics) Computational Intelligence Complex Networks Science, general Data Mining and Knowledge Discovery Informatik Künstliche Intelligenz Naturwissenschaft Data Mining (DE-588)4428654-5 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Wissensextraktion (DE-588)4546354-2 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Soft Computing (DE-588)4455833-8 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Soft Computing (DE-588)4455833-8 s Informatik (DE-588)4026894-9 s Mustererkennung (DE-588)4040936-3 s Data Mining (DE-588)4428654-5 s Wissensextraktion (DE-588)4546354-2 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 Zhao, Liang Verfasser aut Erscheint auch als Druckausgabe 978-3-319-17289-7 https://doi.org/10.1007/978-3-319-17290-3 Verlag URL des Erstveröffentlichers Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Abstract Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Silva, Thiago Christiano Zhao, Liang Machine Learning in Complex Networks Computer science Science Data mining Artificial intelligence Pattern recognition Physics Artificial Intelligence (incl. Robotics) Computational Intelligence Complex Networks Science, general Data Mining and Knowledge Discovery Informatik Künstliche Intelligenz Naturwissenschaft Data Mining (DE-588)4428654-5 gnd Mustererkennung (DE-588)4040936-3 gnd Wissensextraktion (DE-588)4546354-2 gnd Informatik (DE-588)4026894-9 gnd Soft Computing (DE-588)4455833-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4040936-3 (DE-588)4546354-2 (DE-588)4026894-9 (DE-588)4455833-8 (DE-588)4033447-8 (DE-588)4193754-5 |
title | Machine Learning in Complex Networks |
title_auth | Machine Learning in Complex Networks |
title_exact_search | Machine Learning in Complex Networks |
title_full | Machine Learning in Complex Networks by Thiago Christiano Silva, Liang Zhao |
title_fullStr | Machine Learning in Complex Networks by Thiago Christiano Silva, Liang Zhao |
title_full_unstemmed | Machine Learning in Complex Networks by Thiago Christiano Silva, Liang Zhao |
title_short | Machine Learning in Complex Networks |
title_sort | machine learning in complex networks |
topic | Computer science Science Data mining Artificial intelligence Pattern recognition Physics Artificial Intelligence (incl. Robotics) Computational Intelligence Complex Networks Science, general Data Mining and Knowledge Discovery Informatik Künstliche Intelligenz Naturwissenschaft Data Mining (DE-588)4428654-5 gnd Mustererkennung (DE-588)4040936-3 gnd Wissensextraktion (DE-588)4546354-2 gnd Informatik (DE-588)4026894-9 gnd Soft Computing (DE-588)4455833-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Computer science Science Data mining Artificial intelligence Pattern recognition Physics Artificial Intelligence (incl. Robotics) Computational Intelligence Complex Networks Science, general Data Mining and Knowledge Discovery Informatik Künstliche Intelligenz Naturwissenschaft Data Mining Mustererkennung Wissensextraktion Soft Computing Maschinelles Lernen |
url | https://doi.org/10.1007/978-3-319-17290-3 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028826144&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT silvathiagochristiano machinelearningincomplexnetworks AT zhaoliang machinelearningincomplexnetworks |