Multi-agent machine learning: a reinforcement approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons
[2014]
|
Schlagworte: | |
Online-Zugang: | FRO01 UBG01 UBY01 Volltext |
Beschreibung: | Includes bibliographical references and index "Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"-- "Provide an in-depth coverage of multi-player, differential games and Gam theory"-- |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781118884485 1118884485 9781118884478 1118884477 9781118884614 1118884612 9781322094762 1322094764 111836208X |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043396847 | ||
003 | DE-604 | ||
005 | 20210309 | ||
007 | cr|uuu---uuuuu | ||
008 | 160222s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118884485 |c ePub |9 978-1-118-88448-5 | ||
020 | |a 1118884485 |c ePub |9 1-118-88448-5 | ||
020 | |a 9781118884478 |c Adobe PDF |9 978-1-118-88447-8 | ||
020 | |a 1118884477 |c Adobe PDF |9 1-118-88447-7 | ||
020 | |a 9781118884614 |9 978-1-118-88461-4 | ||
020 | |a 1118884612 |9 1-118-88461-2 | ||
020 | |a 9781322094762 |9 978-1-322-09476-2 | ||
020 | |a 1322094764 |9 1-322-09476-4 | ||
020 | |a 111836208X |9 1-118-36208-X | ||
024 | 7 | |a 10.1002/9781118884614 |2 doi | |
035 | |a (ZDB-35-WIC)ocn881065009 | ||
035 | |a (OCoLC)881065009 | ||
035 | |a (DE-599)BVBBV043396847 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-861 |a DE-706 | ||
082 | 0 | |a 519.3 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Schwartz, Howard M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multi-agent machine learning |b a reinforcement approach |c Howard M. Schwartz |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons |c [2014] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a "Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"-- | ||
500 | |a "Provide an in-depth coverage of multi-player, differential games and Gam theory"-- | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Electronics / General |2 bisacsh | |
650 | 7 | |a Differential games |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Reinforcement learning |2 fast | |
650 | 7 | |a Swarm intelligence |2 fast | |
650 | 4 | |a Reinforcement learning | |
650 | 4 | |a Differential games | |
650 | 4 | |a Swarm intelligence | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Schwarmintelligenz |0 (DE-588)4793676-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehragentensystem |0 (DE-588)4389058-1 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |D s |
689 | 0 | 1 | |a Schwarmintelligenz |0 (DE-588)4793676-9 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mehragentensystem |0 (DE-588)4389058-1 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-118-36208-2 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028815431 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614 |l UBG01 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614 |l UBY01 |p ZDB-35-WIC |q UBY_PDA_WIC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175978305421312 |
---|---|
any_adam_object | |
author | Schwartz, Howard M. |
author_facet | Schwartz, Howard M. |
author_role | aut |
author_sort | Schwartz, Howard M. |
author_variant | h m s hm hms |
building | Verbundindex |
bvnumber | BV043396847 |
classification_rvk | ST 300 |
collection | ZDB-35-WIC |
ctrlnum | (ZDB-35-WIC)ocn881065009 (OCoLC)881065009 (DE-599)BVBBV043396847 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03975nmm a2200781zc 4500</leader><controlfield tag="001">BV043396847</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210309 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160222s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118884485</subfield><subfield code="c">ePub</subfield><subfield code="9">978-1-118-88448-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118884485</subfield><subfield code="c">ePub</subfield><subfield code="9">1-118-88448-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118884478</subfield><subfield code="c">Adobe PDF</subfield><subfield code="9">978-1-118-88447-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118884477</subfield><subfield code="c">Adobe PDF</subfield><subfield code="9">1-118-88447-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118884614</subfield><subfield code="9">978-1-118-88461-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118884612</subfield><subfield code="9">1-118-88461-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781322094762</subfield><subfield code="9">978-1-322-09476-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1322094764</subfield><subfield code="9">1-322-09476-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111836208X</subfield><subfield code="9">1-118-36208-X</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781118884614</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocn881065009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881065009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043396847</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, Howard M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-agent machine learning</subfield><subfield code="b">a reinforcement approach</subfield><subfield code="c">Howard M. Schwartz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Provide an in-depth coverage of multi-player, differential games and Gam theory"--</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Electronics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential games</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reinforcement learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Swarm intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential games</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swarm intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwarmintelligenz</subfield><subfield code="0">(DE-588)4793676-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehragentensystem</subfield><subfield code="0">(DE-588)4389058-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schwarmintelligenz</subfield><subfield code="0">(DE-588)4793676-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mehragentensystem</subfield><subfield code="0">(DE-588)4389058-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-118-36208-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028815431</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBY_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043396847 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:24:52Z |
institution | BVB |
isbn | 9781118884485 1118884485 9781118884478 1118884477 9781118884614 1118884612 9781322094762 1322094764 111836208X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028815431 |
oclc_num | 881065009 |
open_access_boolean | |
owner | DE-861 DE-706 |
owner_facet | DE-861 DE-706 |
physical | 1 Online-Ressource |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC UBY_PDA_WIC_Kauf |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | John Wiley & Sons |
record_format | marc |
spelling | Schwartz, Howard M. Verfasser aut Multi-agent machine learning a reinforcement approach Howard M. Schwartz Hoboken, NJ John Wiley & Sons [2014] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"-- "Provide an in-depth coverage of multi-player, differential games and Gam theory"-- TECHNOLOGY & ENGINEERING / Electronics / General bisacsh Differential games fast Machine learning fast Reinforcement learning fast Swarm intelligence fast Reinforcement learning Differential games Swarm intelligence Machine learning Schwarmintelligenz (DE-588)4793676-9 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd rswk-swf Mehragentensystem (DE-588)4389058-1 gnd rswk-swf Electronic books Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 s Schwarmintelligenz (DE-588)4793676-9 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Mehragentensystem (DE-588)4389058-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-1-118-36208-2 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schwartz, Howard M. Multi-agent machine learning a reinforcement approach TECHNOLOGY & ENGINEERING / Electronics / General bisacsh Differential games fast Machine learning fast Reinforcement learning fast Swarm intelligence fast Reinforcement learning Differential games Swarm intelligence Machine learning Schwarmintelligenz (DE-588)4793676-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Mehragentensystem (DE-588)4389058-1 gnd |
subject_GND | (DE-588)4793676-9 (DE-588)4193754-5 (DE-588)4825546-4 (DE-588)4389058-1 |
title | Multi-agent machine learning a reinforcement approach |
title_auth | Multi-agent machine learning a reinforcement approach |
title_exact_search | Multi-agent machine learning a reinforcement approach |
title_full | Multi-agent machine learning a reinforcement approach Howard M. Schwartz |
title_fullStr | Multi-agent machine learning a reinforcement approach Howard M. Schwartz |
title_full_unstemmed | Multi-agent machine learning a reinforcement approach Howard M. Schwartz |
title_short | Multi-agent machine learning |
title_sort | multi agent machine learning a reinforcement approach |
title_sub | a reinforcement approach |
topic | TECHNOLOGY & ENGINEERING / Electronics / General bisacsh Differential games fast Machine learning fast Reinforcement learning fast Swarm intelligence fast Reinforcement learning Differential games Swarm intelligence Machine learning Schwarmintelligenz (DE-588)4793676-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Mehragentensystem (DE-588)4389058-1 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Electronics / General Differential games Machine learning Reinforcement learning Swarm intelligence Schwarmintelligenz Maschinelles Lernen Bestärkendes Lernen Künstliche Intelligenz Mehragentensystem |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781118884614 |
work_keys_str_mv | AT schwartzhowardm multiagentmachinelearningareinforcementapproach |