Multi-agent machine learning: a reinforcement approach
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schwartz, Howard M. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hoboken, NJ John Wiley & Sons [2014]
Schlagworte:
Online-Zugang:FRO01
UBG01
UBY01
Volltext
Beschreibung:Includes bibliographical references and index
"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--
"Provide an in-depth coverage of multi-player, differential games and Gam theory"--
Beschreibung:1 Online-Ressource
ISBN:9781118884485
1118884485
9781118884478
1118884477
9781118884614
1118884612
9781322094762
1322094764
111836208X

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen