High-dimensional covariance estimation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
© 2013
|
Schriftenreihe: | Wiley series in probability and statistics
|
Schlagworte: | |
Online-Zugang: | FRO01 TUM01 UBG01 URL des Erstveröffentlichers |
Beschreibung: | Includes bibliographical references and index "Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task."--Publisher's website |
Beschreibung: | 1 Online-Ressource (x, 184 pages) |
ISBN: | 9781118573617 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043396032 | ||
003 | DE-604 | ||
005 | 20220429 | ||
007 | cr|uuu---uuuuu | ||
008 | 160222s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781118573617 |9 978-1-118-57361-7 | ||
024 | 7 | |a 10.1002/9781118573617 |2 doi | |
035 | |a (ZDB-35-WIC)ocn849945826 | ||
035 | |a (OCoLC)849945826 | ||
035 | |a (DE-599)BVBBV043396032 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-861 |a DE-91 | ||
082 | 0 | |a 519.5/38 |2 23 | |
084 | |a MAT 628f |2 stub | ||
100 | 1 | |a Pourahmadi, Mohsen |d 1950- |e Verfasser |0 (DE-588)1135622922 |4 aut | |
245 | 1 | 0 | |a High-dimensional covariance estimation |c Mohsen Pourahmadi |
264 | 1 | |a Hoboken, NJ |b Wiley |c © 2013 | |
300 | |a 1 Online-Ressource (x, 184 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley series in probability and statistics | |
500 | |a Includes bibliographical references and index | ||
500 | |a "Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task."--Publisher's website | ||
650 | 4 | |a Libros electronicos | |
650 | 4 | |a Ebooks / UML. | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Analysis of covariance |2 fast | |
650 | 7 | |a Multivariate analysis |2 fast | |
650 | 4 | |a Analysis of covariance | |
650 | 4 | |a Multivariate analysis | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-118-03429-3 |w (DE-604)BV047903447 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028814616 | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617 |l TUM01 |p ZDB-35-WIC |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617 |l UBG01 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175976482996224 |
---|---|
any_adam_object | |
author | Pourahmadi, Mohsen 1950- |
author_GND | (DE-588)1135622922 |
author_facet | Pourahmadi, Mohsen 1950- |
author_role | aut |
author_sort | Pourahmadi, Mohsen 1950- |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV043396032 |
classification_tum | MAT 628f |
collection | ZDB-35-WIC |
ctrlnum | (ZDB-35-WIC)ocn849945826 (OCoLC)849945826 (DE-599)BVBBV043396032 |
dewey-full | 519.5/38 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/38 |
dewey-search | 519.5/38 |
dewey-sort | 3519.5 238 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03177nmm a2200517zc 4500</leader><controlfield tag="001">BV043396032</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220429 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160222s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118573617</subfield><subfield code="9">978-1-118-57361-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781118573617</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocn849945826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849945826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043396032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/38</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 628f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pourahmadi, Mohsen</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1135622922</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-dimensional covariance estimation</subfield><subfield code="c">Mohsen Pourahmadi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 184 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in probability and statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Libros electronicos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ebooks / UML.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analysis of covariance</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multivariate analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis of covariance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-118-03429-3</subfield><subfield code="w">(DE-604)BV047903447</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028814616</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043396032 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:24:50Z |
institution | BVB |
isbn | 9781118573617 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028814616 |
oclc_num | 849945826 |
open_access_boolean | |
owner | DE-861 DE-91 DE-BY-TUM |
owner_facet | DE-861 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (x, 184 pages) |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC TUM_Einzelkauf ZDB-35-WIC UBG_PDA_WIC |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series in probability and statistics |
spelling | Pourahmadi, Mohsen 1950- Verfasser (DE-588)1135622922 aut High-dimensional covariance estimation Mohsen Pourahmadi Hoboken, NJ Wiley © 2013 1 Online-Ressource (x, 184 pages) txt rdacontent c rdamedia cr rdacarrier Wiley series in probability and statistics Includes bibliographical references and index "Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task."--Publisher's website Libros electronicos Ebooks / UML. MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Analysis of covariance fast Multivariate analysis fast Analysis of covariance Multivariate analysis Erscheint auch als Druck-Ausgabe 978-1-118-03429-3 (DE-604)BV047903447 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Pourahmadi, Mohsen 1950- High-dimensional covariance estimation Libros electronicos Ebooks / UML. MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Analysis of covariance fast Multivariate analysis fast Analysis of covariance Multivariate analysis |
title | High-dimensional covariance estimation |
title_auth | High-dimensional covariance estimation |
title_exact_search | High-dimensional covariance estimation |
title_full | High-dimensional covariance estimation Mohsen Pourahmadi |
title_fullStr | High-dimensional covariance estimation Mohsen Pourahmadi |
title_full_unstemmed | High-dimensional covariance estimation Mohsen Pourahmadi |
title_short | High-dimensional covariance estimation |
title_sort | high dimensional covariance estimation |
topic | Libros electronicos Ebooks / UML. MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Analysis of covariance fast Multivariate analysis fast Analysis of covariance Multivariate analysis |
topic_facet | Libros electronicos Ebooks / UML. MATHEMATICS / Applied MATHEMATICS / Probability & Statistics / General Analysis of covariance Multivariate analysis |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781118573617 |
work_keys_str_mv | AT pourahmadimohsen highdimensionalcovarianceestimation |