Neural-based orthogonal data fitting: the EXIN neural networks
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley
©2010
|
Schriftenreihe: | Adaptive and learning systems for signal processing, communication, and control
|
Schlagworte: | |
Online-Zugang: | FRO01 UBG01 FHI01 FHN01 Volltext |
Beschreibung: | Includes bibliographical references and index "Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Where most books on the subject are dedicated to PCA (principal component analysis) and consider MCA (minor component analysis) as simply a consequence, this is the fist book to start from the MCA problem and arrive at important conclusions about the PCA problem."-- |
Beschreibung: | 1 Online-Ressource (xviii, 243 pages, [12] pages of plates) |
ISBN: | 9780470638286 0470638281 9780470638279 0470638273 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043393035 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160222s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780470638286 |c electronic bk. |9 978-0-470-63828-6 | ||
020 | |a 0470638281 |c electronic bk. |9 0-470-63828-1 | ||
020 | |a 9780470638279 |c electronic bk. |9 978-0-470-63827-9 | ||
020 | |a 0470638273 |c electronic bk. |9 0-470-63827-3 | ||
024 | 7 | |a 10.1002/9780470638286 |2 doi | |
035 | |a (ZDB-35-WIC)ocn715365110 | ||
035 | |a (OCoLC)715365110 | ||
035 | |a (DE-599)BVBBV043393035 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-861 |a DE-573 |a DE-92 | ||
082 | 0 | |a 006.3/2 |2 22 | |
100 | 1 | |a Cirrincione, Giansalvo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Neural-based orthogonal data fitting |b the EXIN neural networks |c Giansalvo Cirrincione, Maurizio Cirrincione |
264 | 1 | |a Hoboken, N.J. |b Wiley |c ©2010 | |
300 | |a 1 Online-Ressource (xviii, 243 pages, [12] pages of plates) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Adaptive and learning systems for signal processing, communication, and control | |
500 | |a Includes bibliographical references and index | ||
500 | |a "Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Where most books on the subject are dedicated to PCA (principal component analysis) and consider MCA (minor component analysis) as simply a consequence, this is the fist book to start from the MCA problem and arrive at important conclusions about the PCA problem."-- | ||
650 | 7 | |a COMPUTERS / Neural Networks |2 bisacsh | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Numerical analysis |2 fast | |
650 | 7 | |a Orthogonalization methods |2 fast | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Orthogonalization methods | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hauptkomponentenanalyse |0 (DE-588)4129174-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Hauptkomponentenanalyse |0 (DE-588)4129174-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Cirrincione, Maurizio |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-471-32270-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-471-32270-9 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC |a ZDB-35-WEL | ||
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028811619 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286 |l UBG01 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732789 |l FHI01 |p ZDB-35-WEL |x Aggregator |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732789 |l FHN01 |p ZDB-35-WEL |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175970103459840 |
---|---|
any_adam_object | |
author | Cirrincione, Giansalvo |
author_facet | Cirrincione, Giansalvo |
author_role | aut |
author_sort | Cirrincione, Giansalvo |
author_variant | g c gc |
building | Verbundindex |
bvnumber | BV043393035 |
collection | ZDB-35-WIC ZDB-35-WEL |
ctrlnum | (ZDB-35-WIC)ocn715365110 (OCoLC)715365110 (DE-599)BVBBV043393035 |
dewey-full | 006.3/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/2 |
dewey-search | 006.3/2 |
dewey-sort | 16.3 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03783nmm a2200637zc 4500</leader><controlfield tag="001">BV043393035</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160222s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470638286</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-470-63828-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470638281</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-470-63828-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470638279</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-470-63827-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470638273</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-470-63827-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9780470638286</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocn715365110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)715365110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043393035</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cirrincione, Giansalvo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural-based orthogonal data fitting</subfield><subfield code="b">the EXIN neural networks</subfield><subfield code="c">Giansalvo Cirrincione, Maurizio Cirrincione</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley</subfield><subfield code="c">©2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 243 pages, [12] pages of plates)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive and learning systems for signal processing, communication, and control</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Where most books on the subject are dedicated to PCA (principal component analysis) and consider MCA (minor component analysis) as simply a consequence, this is the fist book to start from the MCA problem and arrive at important conclusions about the PCA problem."--</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Neural Networks</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonalization methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonalization methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hauptkomponentenanalyse</subfield><subfield code="0">(DE-588)4129174-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hauptkomponentenanalyse</subfield><subfield code="0">(DE-588)4129174-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cirrincione, Maurizio</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-471-32270-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-471-32270-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028811619</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732789</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732789</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043393035 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:24:44Z |
institution | BVB |
isbn | 9780470638286 0470638281 9780470638279 0470638273 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028811619 |
oclc_num | 715365110 |
open_access_boolean | |
owner | DE-861 DE-573 DE-92 |
owner_facet | DE-861 DE-573 DE-92 |
physical | 1 Online-Ressource (xviii, 243 pages, [12] pages of plates) |
psigel | ZDB-35-WIC ZDB-35-WEL UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Wiley |
record_format | marc |
series2 | Adaptive and learning systems for signal processing, communication, and control |
spelling | Cirrincione, Giansalvo Verfasser aut Neural-based orthogonal data fitting the EXIN neural networks Giansalvo Cirrincione, Maurizio Cirrincione Hoboken, N.J. Wiley ©2010 1 Online-Ressource (xviii, 243 pages, [12] pages of plates) txt rdacontent c rdamedia cr rdacarrier Adaptive and learning systems for signal processing, communication, and control Includes bibliographical references and index "Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Where most books on the subject are dedicated to PCA (principal component analysis) and consider MCA (minor component analysis) as simply a consequence, this is the fist book to start from the MCA problem and arrive at important conclusions about the PCA problem."-- COMPUTERS / Neural Networks bisacsh Neural networks (Computer science) fast Numerical analysis fast Orthogonalization methods fast Neural networks (Computer science) Numerical analysis Orthogonalization methods Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Hauptkomponentenanalyse (DE-588)4129174-8 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 s Hauptkomponentenanalyse (DE-588)4129174-8 s 1\p DE-604 Cirrincione, Maurizio Sonstige oth Erscheint auch als Druck-Ausgabe, Hardcover 978-0-471-32270-2 Erscheint auch als Druck-Ausgabe, Hardcover 0-471-32270-9 https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cirrincione, Giansalvo Neural-based orthogonal data fitting the EXIN neural networks COMPUTERS / Neural Networks bisacsh Neural networks (Computer science) fast Numerical analysis fast Orthogonalization methods fast Neural networks (Computer science) Numerical analysis Orthogonalization methods Neuronales Netz (DE-588)4226127-2 gnd Hauptkomponentenanalyse (DE-588)4129174-8 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4129174-8 |
title | Neural-based orthogonal data fitting the EXIN neural networks |
title_auth | Neural-based orthogonal data fitting the EXIN neural networks |
title_exact_search | Neural-based orthogonal data fitting the EXIN neural networks |
title_full | Neural-based orthogonal data fitting the EXIN neural networks Giansalvo Cirrincione, Maurizio Cirrincione |
title_fullStr | Neural-based orthogonal data fitting the EXIN neural networks Giansalvo Cirrincione, Maurizio Cirrincione |
title_full_unstemmed | Neural-based orthogonal data fitting the EXIN neural networks Giansalvo Cirrincione, Maurizio Cirrincione |
title_short | Neural-based orthogonal data fitting |
title_sort | neural based orthogonal data fitting the exin neural networks |
title_sub | the EXIN neural networks |
topic | COMPUTERS / Neural Networks bisacsh Neural networks (Computer science) fast Numerical analysis fast Orthogonalization methods fast Neural networks (Computer science) Numerical analysis Orthogonalization methods Neuronales Netz (DE-588)4226127-2 gnd Hauptkomponentenanalyse (DE-588)4129174-8 gnd |
topic_facet | COMPUTERS / Neural Networks Neural networks (Computer science) Numerical analysis Orthogonalization methods Neuronales Netz Hauptkomponentenanalyse |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638286 |
work_keys_str_mv | AT cirrincionegiansalvo neuralbasedorthogonaldatafittingtheexinneuralnetworks AT cirrincionemaurizio neuralbasedorthogonaldatafittingtheexinneuralnetworks |