Bayesian signal processing: classical, modern, and particle filtering methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley
©2009
|
Schriftenreihe: | Adaptive and learning systems for signal processing, communications, and control
|
Schlagworte: | |
Online-Zugang: | FRO01 UBG01 URL des Erstveröffentlichers |
Beschreibung: | Includes bibliographical references and index New Bayesian approach helps you solve tough problems in signal processing with ease. Signal processing is based on this fundamental conceptthe extraction of critical information from noisy, uncertain data. Most techniques rely on underlying Gaussian assumptions for a solution, but what happens when these assumptions are erroneous? Bayesian techniques circumvent this limitation by offering a completely different approach that can easily incorporate non-Gaussian and nonlinear processes along with all of the usual methods currently available. This text enables readers to fully exploit the many a |
Beschreibung: | 1 Online-Ressource (xxiii, 445 pages) |
ISBN: | 9780470430583 0470430583 9781118210543 1118210549 0470180943 9780470180945 9780470430576 0470430575 1282316680 9781282316683 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043390365 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160222s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780470430583 |9 978-0-470-43058-3 | ||
020 | |a 0470430583 |9 0-470-43058-3 | ||
020 | |a 9781118210543 |9 978-1-118-21054-3 | ||
020 | |a 1118210549 |9 1-118-21054-9 | ||
020 | |a 0470180943 |9 0-470-18094-3 | ||
020 | |a 9780470180945 |9 978-0-470-18094-5 | ||
020 | |a 9780470430576 |c electronic bk. |9 978-0-470-43057-6 | ||
020 | |a 0470430575 |c electronic bk. |9 0-470-43057-5 | ||
020 | |a 1282316680 |9 1-282-31668-0 | ||
020 | |a 9781282316683 |9 978-1-282-31668-3 | ||
024 | 7 | |a 10.1002/9780470430583 |2 doi | |
035 | |a (ZDB-35-WIC)ocn463438581 | ||
035 | |a (OCoLC)463438581 | ||
035 | |a (DE-599)BVBBV043390365 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-861 | ||
082 | 0 | |a 621.382/2 |2 22 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
100 | 1 | |a Candy, J. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bayesian signal processing |b classical, modern, and particle filtering methods |c James V. Candy |
264 | 1 | |a Hoboken, N.J. |b Wiley |c ©2009 | |
300 | |a 1 Online-Ressource (xxiii, 445 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Adaptive and learning systems for signal processing, communications, and control | |
500 | |a Includes bibliographical references and index | ||
500 | |a New Bayesian approach helps you solve tough problems in signal processing with ease. Signal processing is based on this fundamental conceptthe extraction of critical information from noisy, uncertain data. Most techniques rely on underlying Gaussian assumptions for a solution, but what happens when these assumptions are erroneous? Bayesian techniques circumvent this limitation by offering a completely different approach that can easily incorporate non-Gaussian and nonlinear processes along with all of the usual methods currently available. This text enables readers to fully exploit the many a | ||
650 | 4 | |a Signal processing / Mathematics | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 7 | |a COMPUTERS / Information Theory |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Signals & Signal Processing |2 bisacsh | |
650 | 7 | |a Bayesian statistical decision theory |2 fast | |
650 | 7 | |a Signal processing / Mathematics |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Signal processing / Mathematics | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Signalverarbeitung |0 (DE-588)4054947-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Signalverarbeitung |0 (DE-588)4054947-1 |D s |
689 | 0 | 1 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-470-18094-5 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028808949 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583 |l UBG01 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175964482043904 |
---|---|
any_adam_object | |
author | Candy, J. V. |
author_facet | Candy, J. V. |
author_role | aut |
author_sort | Candy, J. V. |
author_variant | j v c jv jvc |
building | Verbundindex |
bvnumber | BV043390365 |
classification_rvk | QH 233 |
collection | ZDB-35-WIC |
ctrlnum | (ZDB-35-WIC)ocn463438581 (OCoLC)463438581 (DE-599)BVBBV043390365 |
dewey-full | 621.382/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382/2 |
dewey-search | 621.382/2 |
dewey-sort | 3621.382 12 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03505nmm a2200697zc 4500</leader><controlfield tag="001">BV043390365</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160222s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470430583</subfield><subfield code="9">978-0-470-43058-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470430583</subfield><subfield code="9">0-470-43058-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118210543</subfield><subfield code="9">978-1-118-21054-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118210549</subfield><subfield code="9">1-118-21054-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470180943</subfield><subfield code="9">0-470-18094-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470180945</subfield><subfield code="9">978-0-470-18094-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470430576</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-470-43057-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470430575</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-470-43057-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282316680</subfield><subfield code="9">1-282-31668-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282316683</subfield><subfield code="9">978-1-282-31668-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9780470430583</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocn463438581</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)463438581</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043390365</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Candy, J. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian signal processing</subfield><subfield code="b">classical, modern, and particle filtering methods</subfield><subfield code="c">James V. Candy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley</subfield><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 445 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive and learning systems for signal processing, communications, and control</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">New Bayesian approach helps you solve tough problems in signal processing with ease. Signal processing is based on this fundamental conceptthe extraction of critical information from noisy, uncertain data. Most techniques rely on underlying Gaussian assumptions for a solution, but what happens when these assumptions are erroneous? Bayesian techniques circumvent this limitation by offering a completely different approach that can easily incorporate non-Gaussian and nonlinear processes along with all of the usual methods currently available. This text enables readers to fully exploit the many a</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Information Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Signals & Signal Processing</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Signal processing / Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-470-18094-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028808949</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043390365 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:24:39Z |
institution | BVB |
isbn | 9780470430583 0470430583 9781118210543 1118210549 0470180943 9780470180945 9780470430576 0470430575 1282316680 9781282316683 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028808949 |
oclc_num | 463438581 |
open_access_boolean | |
owner | DE-861 |
owner_facet | DE-861 |
physical | 1 Online-Ressource (xxiii, 445 pages) |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley |
record_format | marc |
series2 | Adaptive and learning systems for signal processing, communications, and control |
spelling | Candy, J. V. Verfasser aut Bayesian signal processing classical, modern, and particle filtering methods James V. Candy Hoboken, N.J. Wiley ©2009 1 Online-Ressource (xxiii, 445 pages) txt rdacontent c rdamedia cr rdacarrier Adaptive and learning systems for signal processing, communications, and control Includes bibliographical references and index New Bayesian approach helps you solve tough problems in signal processing with ease. Signal processing is based on this fundamental conceptthe extraction of critical information from noisy, uncertain data. Most techniques rely on underlying Gaussian assumptions for a solution, but what happens when these assumptions are erroneous? Bayesian techniques circumvent this limitation by offering a completely different approach that can easily incorporate non-Gaussian and nonlinear processes along with all of the usual methods currently available. This text enables readers to fully exploit the many a Signal processing / Mathematics Bayesian statistical decision theory COMPUTERS / Information Theory bisacsh TECHNOLOGY & ENGINEERING / Signals & Signal Processing bisacsh Bayesian statistical decision theory fast Signal processing / Mathematics fast Mathematik Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Signalverarbeitung (DE-588)4054947-1 gnd rswk-swf Signalverarbeitung (DE-588)4054947-1 s Bayes-Verfahren (DE-588)4204326-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-470-18094-5 https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Candy, J. V. Bayesian signal processing classical, modern, and particle filtering methods Signal processing / Mathematics Bayesian statistical decision theory COMPUTERS / Information Theory bisacsh TECHNOLOGY & ENGINEERING / Signals & Signal Processing bisacsh Bayesian statistical decision theory fast Signal processing / Mathematics fast Mathematik Bayes-Verfahren (DE-588)4204326-8 gnd Signalverarbeitung (DE-588)4054947-1 gnd |
subject_GND | (DE-588)4204326-8 (DE-588)4054947-1 |
title | Bayesian signal processing classical, modern, and particle filtering methods |
title_auth | Bayesian signal processing classical, modern, and particle filtering methods |
title_exact_search | Bayesian signal processing classical, modern, and particle filtering methods |
title_full | Bayesian signal processing classical, modern, and particle filtering methods James V. Candy |
title_fullStr | Bayesian signal processing classical, modern, and particle filtering methods James V. Candy |
title_full_unstemmed | Bayesian signal processing classical, modern, and particle filtering methods James V. Candy |
title_short | Bayesian signal processing |
title_sort | bayesian signal processing classical modern and particle filtering methods |
title_sub | classical, modern, and particle filtering methods |
topic | Signal processing / Mathematics Bayesian statistical decision theory COMPUTERS / Information Theory bisacsh TECHNOLOGY & ENGINEERING / Signals & Signal Processing bisacsh Bayesian statistical decision theory fast Signal processing / Mathematics fast Mathematik Bayes-Verfahren (DE-588)4204326-8 gnd Signalverarbeitung (DE-588)4054947-1 gnd |
topic_facet | Signal processing / Mathematics Bayesian statistical decision theory COMPUTERS / Information Theory TECHNOLOGY & ENGINEERING / Signals & Signal Processing Mathematik Bayes-Verfahren Signalverarbeitung |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9780470430583 |
work_keys_str_mv | AT candyjv bayesiansignalprocessingclassicalmodernandparticlefilteringmethods |