Hp-Finite elements for PDE-constrained optimization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Würzburg
Würzburg University Press
2015
|
Schlagworte: | |
Online-Zugang: | Volltext Inhaltsverzeichnis |
Beschreibung: | XIV, 174 Seiten Illustrationen, Diagramme |
ISBN: | 9783958260245 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV043349218 | ||
003 | DE-604 | ||
005 | 20190219 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 160208s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783958260245 |9 978-3-95826-024-5 | ||
035 | |a (OCoLC)955345863 | ||
035 | |a (DE-599)BVBBV043349218 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-12 |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-1102 |a DE-860 |a DE-2174 | ||
082 | 0 | |a 518.25 |2 22//ger | |
084 | |a SK 880 |0 (DE-625)143266: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
100 | 1 | |a Wurst, Jan-Eric |e Verfasser |0 (DE-588)1042405573 |4 aut | |
245 | 1 | 0 | |a Hp-Finite elements for PDE-constrained optimization |c Jan-Eric Wurst |
264 | 1 | |a Würzburg |b Würzburg University Press |c 2015 | |
300 | |a XIV, 174 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Julius-Maximilians-Universität Würzburg, Fakultät für Mathematik und Informatik |d 2015 | ||
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | 1 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 0 | 2 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:20-opus-115027 |z 978-3-95826-025-2 |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-115027 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028768794&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028768794 |
Datensatz im Suchindex
_version_ | 1804175902978867200 |
---|---|
adam_text | CONTENTS
PREFACE V*
LIST OF SYMBOLS AND ABBREVIATIONS XI
1 INTRODUCTION 1
1.1 THE FINITE ELEMENT M E TH O D
..................................................................... 1
1.2 APPLICATION TO CONTROL CONSTRAINED OPTIMIZATION PROBLEMS. ...... 4
1.3 SOLUTION TECHNIQUES AND THEIR MAIN I D E A S
.............................................
5
1.3.1 THE SEMI-SMOOTH NEWTON METHOD AND A-PRIORI DISCRETIZATIONS 5
1.3.2 THE INTERIOR POINT METHOD AND *-POSTERIORI DISCRETIZATIONS . . . 6
1.4 OUTLINE OF THE T H E
SIS.................................................................................
7
2 OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS 9
2.1 PRELIM
INARIES.............................................................................................
9
2.1.1 FUNCTIONAL
ANALYSIS........................................................................
10
2.1.2 THE
DOMAIN....................................................................................
11
2.1.3 FUNCTION SPACES
...........................................................................
12
2.2 THE MODEL PRNBLP
*
....................................................................................
17
2.2.1 SMOOTH NEUMANN PROBLEM
S......................................................... 18
2.2.2 TRANSMISSION
PROBLEMS..................................................................
19
2.3 SOLVABILITY AND OPTIMALITY
CONDITIONS...................................................... 20
3 REGULARITY RESULTS 23
3.1 CLASSICAL SOBOLEV-SLOBODE^ ................... 24
3.1.1 EXPANSIONS IN REGULAR AND SINGUL^^ ........ 24
3.1.2 LOWER BOUNDS FOR
EIGENVALUES...................................................... 33
3.2 ANALYTIC REGULARITY FAR FROM THE BOUNDARY AND INTERFACE ........ 37
3.3 ANALNIE REGULARITY FAR FROM SINGULAR P O IN
TS............................................. 39
3.3.1 PRELIMINARY ASSUMPTIONS AND R EM ARKS
.......................................
39
3.3.2 COVERING R E S U LTS
.....................................................................
..
. 41
3.3.3 LOCAL REGULARITY
...........................................................................
48
3.3.4 GLOBAL
REGULARITY...........................................................................
59
3.3.5 COMMENTS ON THE DERIVATION OF M LY TIC ITY
.................................
65
CONTENTS
4 THE HP-F N XE ELEMENT METHOD
4.1 GENERAL CONCEPTS .........
4.2 IMPLEMENTATIONAL REMARKS . . .
4.2.1 DESIGNING BASIS FUNCTIONS
4.2.2 THE ASSEMBLY PROCESS . .
4.3 ALGEBRAIC CONVERGENCE OF THE BOUNDARY CONCENTRATED FEM
4.3.1 ENERGY NORM E S TIM A TE S
..........................................
4.3.2 LEBESGUE NORM ESTIMATES AT THE BOUNDARY.....
4.4 EXPONENTIAL CONVERGENCE OF THE VERTEX CONCENTRATED FEM
5 NUMERICAL INVESTIGATIONS
5.1 VARIATIONAL DISCRETIZATION
...................................................
5.2 NEUMANN CONTROL P RO B LEM
S................................................
5.2.1 BOUNDARY CONCENTRATED FEM ............
5.2.2 VERTEX CONCENTRATED F E M
.......................................
5.2.3 BANG-BANG PROBLEM
S................................................
5.3 INTERFACE CONTROL
PROBLEMS...................................................
6 A PATH-FOLLOWING APPROACH
6.1 THE BARRIER PROBLEM AND CENTRAL PATH ...........
6.2 THE INTERIOR POINT M E TH O D
...................................................
6.2.1 AN ABSTRACT ALGORITHM IN FUNCTION
6.2.2 WELL*POSEDNESS
6.2.3 C
ONVERGENCE............................................................
6.3
DISCRETIZATION........................................................................
6.3.1 THE OPTIMALITY SYSTEM
.............................................
6.3.2 ESTIMATING SMOOTHNESS AND HP-ADAPTIVITY .....
6.3.3 A FULLY ADAPTIVE INTERIOR POINT
6.4 *-POSTERIORI ERROR
ESTIMATORS................................................
6.4.1 ERROR TO THE CENTRAL P A TH
..........................................
6.4.2 ERROR IN THE NEWTON S Y STEM
....................................
6.4.3 RESIDUAL BASED HP ERROR ESTIMATES .........
6.5 NUMERICAL E XAM
PLES............................................................
6.5.1 TESTING
ZIP-ADAPTIVITY................................................
6.5.2 TESTING ADAPTIVE PATH-FOLLOWING. ..........
7 CONCLUSION AND OUTLOOK
7.1 SEMI-SMOOTH NEWTON M E TH O D S
..........................................
7.2 PATH-FOLLOWING M ETH O D
S......................................................
7.3 NON-LINEAR STATE E Q U A TIO N
S................................................
7.4 STATE C
ONSTRAINTS..................................................................
7.5
MISCELLANEOUS........................................................................
BIBLIOGRAPHY
67
60
71
71
76
80
81
93
97
99
00
03
04
10
16
19
5
6
9
9
0
3
4
5
7
8
3
3
5
6
8
8
3
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
5
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
H
H
*
*
1
7
7
,
8
8
9
1
3
*
5
5
5
5
6
6I
VI
|
any_adam_object | 1 |
author | Wurst, Jan-Eric |
author_GND | (DE-588)1042405573 |
author_facet | Wurst, Jan-Eric |
author_role | aut |
author_sort | Wurst, Jan-Eric |
author_variant | j e w jew |
building | Verbundindex |
bvnumber | BV043349218 |
classification_rvk | SK 880 SK 910 |
collection | ebook |
ctrlnum | (OCoLC)955345863 (DE-599)BVBBV043349218 |
dewey-full | 518.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518.25 |
dewey-search | 518.25 |
dewey-sort | 3518.25 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02191nmm a2200457 c 4500</leader><controlfield tag="001">BV043349218</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190219 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160208s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783958260245</subfield><subfield code="9">978-3-95826-024-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)955345863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043349218</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.25</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wurst, Jan-Eric</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1042405573</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hp-Finite elements for PDE-constrained optimization</subfield><subfield code="c">Jan-Eric Wurst</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Würzburg</subfield><subfield code="b">Würzburg University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 174 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Julius-Maximilians-Universität Würzburg, Fakultät für Mathematik und Informatik</subfield><subfield code="d">2015</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:20-opus-115027</subfield><subfield code="z">978-3-95826-025-2</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-115027</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028768794&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028768794</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV043349218 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:23:40Z |
institution | BVB |
isbn | 9783958260245 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028768794 |
oclc_num | 955345863 |
open_access_boolean | 1 |
owner | DE-20 DE-12 DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-1102 DE-860 DE-2174 |
owner_facet | DE-20 DE-12 DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-1102 DE-860 DE-2174 |
physical | XIV, 174 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Würzburg University Press |
record_format | marc |
spelling | Wurst, Jan-Eric Verfasser (DE-588)1042405573 aut Hp-Finite elements for PDE-constrained optimization Jan-Eric Wurst Würzburg Würzburg University Press 2015 XIV, 174 Seiten Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Julius-Maximilians-Universität Würzburg, Fakultät für Mathematik und Informatik 2015 Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Finite-Elemente-Methode (DE-588)4017233-8 s Optimale Kontrolle (DE-588)4121428-6 s Elliptische Differentialgleichung (DE-588)4014485-9 s DE-604 Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:20-opus-115027 978-3-95826-025-2 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-115027 Resolving-System kostenfrei Volltext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028768794&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wurst, Jan-Eric Hp-Finite elements for PDE-constrained optimization Optimale Kontrolle (DE-588)4121428-6 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
subject_GND | (DE-588)4121428-6 (DE-588)4014485-9 (DE-588)4017233-8 (DE-588)4113937-9 |
title | Hp-Finite elements for PDE-constrained optimization |
title_auth | Hp-Finite elements for PDE-constrained optimization |
title_exact_search | Hp-Finite elements for PDE-constrained optimization |
title_full | Hp-Finite elements for PDE-constrained optimization Jan-Eric Wurst |
title_fullStr | Hp-Finite elements for PDE-constrained optimization Jan-Eric Wurst |
title_full_unstemmed | Hp-Finite elements for PDE-constrained optimization Jan-Eric Wurst |
title_short | Hp-Finite elements for PDE-constrained optimization |
title_sort | hp finite elements for pde constrained optimization |
topic | Optimale Kontrolle (DE-588)4121428-6 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
topic_facet | Optimale Kontrolle Elliptische Differentialgleichung Finite-Elemente-Methode Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-115027 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028768794&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wurstjaneric hpfiniteelementsforpdeconstrainedoptimization |