Groups of prime power order: Volume 4
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
de Gruyter
[2016]
|
Schriftenreihe: | De Gruyter expositions in mathematics
volume 61 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XVI, 458 Seiten |
ISBN: | 3110281457 9783110281453 9783110281484 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV043340391 | ||
003 | DE-604 | ||
005 | 20160219 | ||
007 | t | ||
008 | 160204s2016 gw |||| 00||| eng d | ||
016 | 7 | |a 1078859930 |2 DE-101 | |
020 | |a 3110281457 |9 3-11-028145-7 | ||
020 | |a 9783110281453 |c hbk |9 978-3-11-028145-3 | ||
020 | |a 9783110281484 |c SetISBN |9 978-3-11-028148-4 | ||
035 | |a (OCoLC)955608678 | ||
035 | |a (DE-599)DNB1078859930 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-19 |a DE-11 |a DE-20 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Berkovič, Jakov G. |d 1938- |e Verfasser |0 (DE-588)13780556X |4 aut | |
245 | 1 | 0 | |a Groups of prime power order |n Volume 4 |c by Yakov Berkovich and Zvonimir Janko |
264 | 1 | |a Berlin |b de Gruyter |c [2016] | |
300 | |a XVI, 458 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics |v volume 61 | |
490 | 0 | |a De Gruyter expositions in mathematics |v ... | |
653 | |a Group Theory | ||
653 | |a Order | ||
653 | |a Primes | ||
700 | 1 | |a Janko, Zvonimir |d 1932- |e Verfasser |0 (DE-588)137026056 |4 aut | |
773 | 0 | 8 | |w (DE-604)BV035309846 |g 4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-038155-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-028147-7 |
830 | 0 | |a De Gruyter expositions in mathematics |v volume 61 |w (DE-604)BV004069300 |9 61 | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://d-nb.info/1078859930/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028760315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028760315 |
Datensatz im Suchindex
_version_ | 1804175890902417408 |
---|---|
adam_text | CONTENTS
LIST OF DEFINITIONS AND NOTATIONS * IX
PREFACE * XV
§ 145 P-GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS, EXCEPT ONE, HAVE DERIVED
SUBGROUP OF ORDER P * 1
§ 146 P-GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS, EXCEPT ONE, HAVE CYCLIC
DERIVED
SUBGROUPS * 8
§ 147 P-GROUPS WITH EXACTLY TWO SIZES OF CONJUGATE CLASSES *15
§ 148 MAXIMAL ABELIAN AND MINIMAL NONABELIAN SUBGROUPS OF SOME FINITE
TWO-GENERATOR P-GROUPS ESPECIALLY METACYCLIC *17
§ 149 P-GROUPS WITH MANY MINIMAL NONABELIAN SUBGROUPS * 50
§150 THE EXPONENTS OF FINITE P-GROUPS AND THEIR AUTOMORPHISM GROUPS * 59
§ 151 P-GROUPS ALL OF WHOSE NONABELIAN MAXIMAL SUBGROUPS HAVE THE
LARGEST
POSSIBLE CENTER * 61
§152 P-CENTRAL P-GROUPS 64
§ 153 SOME GENERALIZATIONS OF 2-CENTRAL 2-GROUPS * 67
§154 METACYCLIC P-GROUPS COVERED BY MINIMAL NONABELIAN SUBGROUPS * 70
§155 A NEW TYPE OF THOMPSON SUBGROUP 72
§156 MINIMAL NUMBER OF GENERATORS OF A P-GROUP, P 2 * 75
§157 SOME FURTHER PROPERTIES OF P-CENTRAL P-GROUPS * 78
§ 158 ON EXTRASPECIAL NORMAL SUBGROUPS OF P-GROUPS * 82
§159 2-GROUPS ALL OF WHOSE CYCLIC SUBGROUPS A, B WITH A
N
B # {1} GENERATE AN
ABELIAN SUBGROUP * 85
HTTP://D-NB.INFO/1078859930
VI *
CONTENTS
§ 160 P-GROUPS, P 2, ALL OF WHOSE CYCLIC SUBGROUPS A, B WITH A
N
B # {1}
GENERATE AN ABELIAN SUBGROUP * 98
§ 161 P-GROUPS WHERE ALL SUBGROUPS NOT CONTAINED IN THE FRATTINI
SUBGROUP ARE
QUASINORMAL 102
§ 162 THE CENTRALIZER EQUALITY SUBGROUP IN A P-GROUP 109
§ 163 MACDONALD S THEOREM ON P-GROUPS ALL OF WHOSE PROPER SUBGROUPS ARE
OF
CLASS AT MOST 2 113
§ 164 PARTITIONS AND H
P
-SUBGROUPS OF A
P-GROUP *116
§ 165 P-GROUPS 6 ALL OF WHOSE SUBGROUPS CONTAINING 0(G)
AS A SUBGROUP OF INDEX
P ARE MINIMAL NONABELIAN *121
§ 166 A CHARACTERIZATION OF P-GROUPS OF CLASS 2 ALL OF WHOSE PROPER
SUBGROUPS
ARE OF CLASS 2 124
§ 167 NONABELIAN P-GROUPS ALL OF WHOSE NONABELIAN SUBGROUPS CONTAIN THE
FRATTINI SUBGROUP *128
§ 168 P-GROUPS WITH GIVEN INTERSECTIONS OF CERTAIN SUBGROUPS 137
§ 169 NONABELIAN P-GROUPS G WITH (A,
B) MINIMAL NONABELIAN FOR ANY TWO DISTINCT
MAXIMAL CYCLIC SUBGROUPS A, B OF G 141
§ 170 P-GROUPS WITH MANY MINIMAL NONABELIAN SUBGROUPS, 2 *143
§ 171 CHARACTERIZATIONS OF DEDEKINDIAN 2-GROUPS 145
§172 ON 2-GROUPS WITH SMALL CENTRALIZERS OF ELEMENTS 151
§ 173 NONABELIAN P-GROUPS WITH EXACTLY ONE NONCYCLIC MAXIMAL ABELIAN
SUBGROUP 153
§ 174 CLASSIFICATION OF P-GROUPS ALL OF WHOSE NONNORMAL SUBGROUPS ARE
CYCLIC OR
ABELIAN OF TYPE (P, P) 156
§ 175 CLASSIFICATION OF P-GROUPS ALL OF WHOSE NONNORMAL SUBGROUPS ARE
CYCLIC,
ABELIAN OF TYPE (P, P) OR ORDINARY QUATERNION 168
CONTENTS
VII
§ 176 CLASSIFICATION OF P-GROUPS WITH A CYCLIC INTERSECTION OF ANY TWO
DISTINCT
CONJUGATE SUBGROUPS 175
§177 ON THE NORM OF AP-GROUP 217
§178 P-GROUPS WHOSE CHARACTER TABLES ARE STRONGLY EQUIVALENT TO
CHARACTER
TABLES OF METACYCLIC P-GROUPS, AND SOME RELATED TOPICS * 221
§179 P-GROUPS WITH THE SAME NUMBERS OF SUBGROUPS OF SMALL INDICES AND
ORDERS
AS IN A METACYCLIC P-GROUP * 228
§180 P-GROUPS ALL OF WHOSE NONCYCLIC ABELIAN SUBGROUPS ARE NORMAL * 233
§ 181 P-GROUPS ALL OF WHOSE NONNORMAL ABELIAN SUBGROUPS LIE IN THE
CENTER OF
THEIR NORMALIZERS 239
§ 182 P-GROUPS WITH A SPECIAL MAXIMAL CYCLIC SUBGROUP 242
§ 183 P-GROUPS GENERATED BY ANY TWO DISTINCT MAXIMAL ABELIAN SUBGROUPS *
245
§ 184 P-GROUPS IN WHICH THE INTERSECTION OF ANY TWO DISTINCT CONJUGATE
SUBGROUPS
IS CYCLIC OR GENERALIZED QUATERNION 248
§ 185 2-GROUPS IN WHICH THE INTERSECTION OF ANY TWO DISTINCT CONJUGATE
SUBGROUPS
IS EITHER CYCLIC OR OF MAXIMAL CLASS 254
§ 186 P-GROUPS IN WHICH THE INTERSECTION OF ANY TWO DISTINCT CONJUGATE
SUBGROUPS
IS EITHER CYCLIC OR ABELIAN OF TYPE (P, P) * 258
§ 187 P-GROUPS IN WHICH THE INTERSECTION OF ANY TWO DISTINCT CONJUGATE
CYCLIC
SUBGROUPS IS TRIVIAL 263
§ 188 P-GROUPS WITH SMALL SUBGROUPS GENERATED BY TWO CONJUGATE
ELEMENTS 267
§ 189 2-GROUPS WITH INDEX OF EVERY CYCLIC SUBGROUP IN ITS NORMAL CLOSURE
4 275
APPENDIX 45 VARIA II 290
APPENDIX 46 ON ZSIGMONDY PRIMES 326
VIII
CONTENTS
APPENDIX 47 THE HOLOMORPH OF A CYCLIC 2-GROUP * 332
APPENDIX 48 SOME RESULTS OF R. VAN
DER WAALL AND CLOSE TO THEM * 335
APPENDIX 49 KEGEL S THEOREM ON NILPOTENCE OF H
P
-GROUPS * 338
APPENDIX 50 SUFFICIENT CONDITIONS FOR 2-NILPOTENCE * 341
APPENDIX 51 VARIA III * 347
APPENDIX 52 NORMAL COMPLEMENTS FOR NILPOTENT HALL SUBGROUPS 381
APPENDIX 53 P-GROUPS WITH LARGE ABELIAN SUBGROUPS AND SOME RELATED
RESULTS 389
APPENDIX 54 ON PASSMAN S THEOREM
1.25 FOR P 2 394
APPENDIX 55 ON P-GROUPS WITH THE CYCLIC DERIVED SUBGROUP OF INDEX P
2
* 396
APPENDIX 56 ON FINITE GROUPS ALL OF WHOSE
P-SUBGROUPS OF SMALL ORDERS ARE
NORMAL * 398
APPENDIX 57 P-GROUPS WITH A 2-UNISERIAL SUBGROUP OF ORDER P AND AN
ABELIAN
SUBGROUP OF TYPE (P, P) 404
RESEARCH PROBLEMS AND THEMES IV * 407
BIBLIOGRAPHY * 435
AUTHOR INDEX * 449
SUBJECT INDEX 451
|
any_adam_object | 1 |
author | Berkovič, Jakov G. 1938- Janko, Zvonimir 1932- |
author_GND | (DE-588)13780556X (DE-588)137026056 |
author_facet | Berkovič, Jakov G. 1938- Janko, Zvonimir 1932- |
author_role | aut aut |
author_sort | Berkovič, Jakov G. 1938- |
author_variant | j g b jg jgb z j zj |
building | Verbundindex |
bvnumber | BV043340391 |
classification_rvk | SK 260 |
ctrlnum | (OCoLC)955608678 (DE-599)DNB1078859930 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01892nam a2200469 cc4500</leader><controlfield tag="001">BV043340391</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160204s2016 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1078859930</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110281457</subfield><subfield code="9">3-11-028145-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281453</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-11-028145-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281484</subfield><subfield code="c">SetISBN</subfield><subfield code="9">978-3-11-028148-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)955608678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1078859930</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovič, Jakov G.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13780556X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups of prime power order</subfield><subfield code="n">Volume 4</subfield><subfield code="c">by Yakov Berkovich and Zvonimir Janko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 458 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">volume 61</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">...</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Group Theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Order</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Primes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janko, Zvonimir</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137026056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV035309846</subfield><subfield code="g">4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-038155-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-028147-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">volume 61</subfield><subfield code="w">(DE-604)BV004069300</subfield><subfield code="9">61</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://d-nb.info/1078859930/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028760315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028760315</subfield></datafield></record></collection> |
id | DE-604.BV043340391 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:23:29Z |
institution | BVB |
isbn | 3110281457 9783110281453 9783110281484 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028760315 |
oclc_num | 955608678 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 DE-20 |
owner_facet | DE-19 DE-BY-UBM DE-11 DE-20 |
physical | XVI, 458 Seiten |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | de Gruyter |
record_format | marc |
series | De Gruyter expositions in mathematics |
series2 | De Gruyter expositions in mathematics |
spelling | Berkovič, Jakov G. 1938- Verfasser (DE-588)13780556X aut Groups of prime power order Volume 4 by Yakov Berkovich and Zvonimir Janko Berlin de Gruyter [2016] XVI, 458 Seiten txt rdacontent n rdamedia nc rdacarrier De Gruyter expositions in mathematics volume 61 De Gruyter expositions in mathematics ... Group Theory Order Primes Janko, Zvonimir 1932- Verfasser (DE-588)137026056 aut (DE-604)BV035309846 4 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-038155-9 Erscheint auch als Online-Ausgabe, PDF 978-3-11-028147-7 De Gruyter expositions in mathematics volume 61 (DE-604)BV004069300 61 B:DE-101 application/pdf http://d-nb.info/1078859930/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028760315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Berkovič, Jakov G. 1938- Janko, Zvonimir 1932- Groups of prime power order De Gruyter expositions in mathematics |
title | Groups of prime power order |
title_auth | Groups of prime power order |
title_exact_search | Groups of prime power order |
title_full | Groups of prime power order Volume 4 by Yakov Berkovich and Zvonimir Janko |
title_fullStr | Groups of prime power order Volume 4 by Yakov Berkovich and Zvonimir Janko |
title_full_unstemmed | Groups of prime power order Volume 4 by Yakov Berkovich and Zvonimir Janko |
title_short | Groups of prime power order |
title_sort | groups of prime power order |
url | http://d-nb.info/1078859930/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028760315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035309846 (DE-604)BV004069300 |
work_keys_str_mv | AT berkovicjakovg groupsofprimepowerordervolume4 AT jankozvonimir groupsofprimepowerordervolume4 |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis