Molecular biology of RNA:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
[2016]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | viii, 426 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9780199671397 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043256915 | ||
003 | DE-604 | ||
005 | 20160414 | ||
007 | t | ||
008 | 160107s2016 a||| |||| 00||| eng d | ||
020 | |a 9780199671397 |c pbk. |9 978-0-19-967139-7 | ||
035 | |a (OCoLC)952709595 | ||
035 | |a (DE-599)BVBBV043256915 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-20 |a DE-29T |a DE-19 |a DE-703 | ||
082 | 0 | |a 572.88 |2 22 | |
084 | |a WD 5355 |0 (DE-625)148201: |2 rvk | ||
100 | 1 | |a Elliott, David |d 1965- |e Verfasser |0 (DE-588)1076802869 |4 aut | |
245 | 1 | 0 | |a Molecular biology of RNA |c David Elliott, Institute of Genetic Medicine, Newcastle University; Michael Ladomery, Faculty of Health and Applied Science, University of the West of England, Bristol |
250 | |a Second edition | ||
264 | 1 | |a Oxford |b Oxford University Press |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a viii, 426 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Molecular biology | |
650 | 4 | |a RNA | |
650 | 0 | 7 | |a Molekulargenetik |0 (DE-588)4039987-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a RNS |0 (DE-588)4076759-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekularbiologie |0 (DE-588)4039983-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a RNS |0 (DE-588)4076759-0 |D s |
689 | 0 | 1 | |a Molekularbiologie |0 (DE-588)4039983-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a RNS |0 (DE-588)4076759-0 |D s |
689 | 1 | 1 | |a Molekulargenetik |0 (DE-588)4039987-4 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Ladomery, Michael |e Verfasser |0 (DE-588)1082788074 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028678934 |
Datensatz im Suchindex
_version_ | 1804175776015187968 |
---|---|
adam_text | The only undergraduate text to provide an accessible overview of the
cutting-edge field of RNA biology.
The versatile RNA molecule, along with its diverse forms and functions, is elegantly captured in this succinct
undergraduate text. RNA plays a central and, until recently, somewhat underestimated role in the genetics
underlying all forms of life on earth. Molecular Biology of RNA describes how RNA is not only an intrinsic part of
the central dogma’ of molecular biology, but also plays a part in processes as varied as the regulation of gene
expression and catalysis. This latter property has led to the hypothesis that RNA—rather than DNA—could have
played an essential part in the origin of life itself.
This landmark text provides a systematic overview of the exciting and rapidly moving field of RNA biology. Key
pioneering experiments, which provided the underlying evidence for what we now know, are described throughout,
while the relevance of the subject to human disease is highlighted via frequent boxes.
New to this edition
• A colour plate section helps to illustrate the more
complex three-dimensional structures featured in
the text.
• End-of-chapter questions help you develop problem-
solving and self-study skills.
• Further introductory material has been incorporated
into Chapter 1, to provide extra support for those new
to the subject.
• A new final chapter ‘RNA biology: future perspectives
explores how cutting-edge techniques are being used
to make new discoveries in the field.
r-------------------------------------------------------- |
online resource centre
www.ojtfordtextbooks.co.uk/orc/eHiott_rna2e/
The Online Resource Centre to accompany this
text features:
For students:
• Web links to online animations of processes
described in the book.
For registered adopters:
• Figures from the book in electronic format, ready
to download.
• Journal Club to help engage students with the
primary literature.
k_______________________________________________________J
CONTENTS
1
2
3
Acknowledgements :x
Foreword x
Introduction to Molecular Biology of RNA 1
1.1 Aims of this book 4
1.2 DNA and RNA are composed of slightly
different building blocks 4
1.3 Nucleotides are joined together through
a phosphodiester backbone to give
nucleotide chains 3
RNA can form versatile structures 11
2.1 How do RNA molecules form structures? 11
2.2 RNA secondary structure: RNA
molecules tend to form a number of
shorter helices compared with DNA 15
2.3 RNA and DNA form different kinds
of double helix 17
2.4 Five common secondary structure
motifs are found within RNA molecules 18
2.5 RNA secondary structures can be worked
out experimentally and predicted
bioinformatically 14
2.6 The formation of RNA helices is
stimulated by positively charged
molecules and particularly metal ions 23
2.7 RNA molecules use a set of strategies
to build tertiary structures 24
2.8 Summary of how RNAs build
structured molecules 27
2.9 RNA structures can be used as
thermosensors 27
2.10 RNA structures can be selected which
bind to target molecules 2c
2.11 Riboswitches are shape-changing RNAs
which can flip gene expression patterns
on binding specific target molecules 31
Catalytic RNAs 36
3.1 Three properties of RNA enable the
catalytic function of ribozymes 7 ֊
3.2 What kinds of reactions do
ribozymes catalyse? : 7
3.3 Ribozymes were first discovered
through serendipity
3.4 Group I introns are spliced through a
two-step mechanism which uses metal
ions in their active sites
3.5 Metal ions play a key role in catalysis
by Group I introns
3.6 Group II introns are also spliced through
a two-step mechanism
3.7 RNA is inherently chemically unstable
because of its 7 -OH group
3.8 Small ribonucleoiytic ribozymes catalyse
their own cleavage
3.9 The hammerhead ribozyme
3.10 The HDV ribozyme
3.11 Are ribozymes true catalysts?
3.12 The RNA world hypothesis: a time when
RNA was used as a genetic material
3.13 Experiments have been carried out
that might model the early steps
that might have occurred during
the evolution of life
4 The RNA-binding proteins
4.1 The RNA recognition motif (RRM)
4.2 The K-homology (KH) domain
4.3 The cold-shock domain
4.4 Double-stranded RNA-binding proteins
4.5 The zinc-finger domain
4.6 Other RNA-binding domains
4.7 Investigating protein-RNA interactions
5 Pre-mRNA splicing by the spliceosome
5.1 RNA splicing was discovered in a virus
5.2 Spliceosomal introns are critical for
efficient eukaryotic gene expression
5.3 Introns enhance eukaryotic gene
expression at several levels
5.4 Introns have an important role in
evolution
5.5 The mechanism of pre-mRNA splicing
5.6 Splice sites
5.7 The spliceosome
Contents
5.8 Spliceosomes assemble and
disassemble on each intron to be
removed in a spiiceosome cycle 94
5.9 How the spiiceosome works 96
5.10 The spiiceosome cycle has been worked
out using in vitro extracts 100
5.11 A minor class of eukaryotic spliceosomal
introns have different splice sites 101
5.12 Spliceosomes can assemble through
intron and exon definition 103
5.13 Trans-splicing is common in trypanosome
parasites and in the nematode C. elegans,
where it enables efficient translation 106
6 Regulated alternative spiking 111
6.1 There are several different types of
alternative splicing 112
6.2 How frequent is alternative splicing? 112
6.3 How exons are recognized by the
splicing machinery 115
6.4 Exon and intron definition control the
type of alternative splicing that operates 119
6.5 Three main factors can contribute to
alternative splicing regulation 121
6.6 Regulation of RNA splicing is controlled
by changes in the concentration of
RNA-binding proteins 121
6.7 Signal transduction pathways can regulate
alternative splicing by changing the
function and location of splicing factors 126
6.8 Transcription elongation speeds can
regulate alternative splicing choices 127
6.9 Transcription can also modulate splicing
pathways via the recruitment of cofactors 130
6.10 Alternative splicing is critical for
normal animal development 130
6.11 RNA splicing regulators play a
critical role in nervous system
development in animals 134
7 Pre-mRNA splicing defects in
development and disease 138
7.1 Mutations affecting the splicing code
can be catastrophic for gene function 138
7.2 Mutations in splicing control sequences
are very frequent causes of human
genetic disease 140
7.3 Genetic mutations create a new splice
site in a premature ageing disease 141
7.4 Mutation of an exonic splicing enhancer
in a DNA damage control gene leads to
breast cancer 144
7.5 How are mutations that cause splicing
defects diagnosed? 144
7.6 Diseases caused by mutations affecting
components of the spiiceosome 147
7.7 Genes encoding important spliceosomal
proteins are mutated in patients with
the eye disease retinitis pigmentosa (RP) 148
7.8 The genes encoding splicing proteins can
become mutated in some kinds of cancer 151
7.9 Splicing changes can change the
properties of cancer cells 152
7.10 Diseases caused by mis-expression of
levels of splicing factors 155
7.11 Splicing as a target to treat cancer 158
7.12 Manipulating pre-mRNA splicing offers
a route to treating muscular dystrophy 158
7.13 Splicing as a route to therapy for
infectious diseases like AIDS 162
8 Co-transcriptional pre-mRNA processing 166
8.1 Transcription and the RNA polymerases 166
8.2 Formation of the ends of an mRNA 169
8.3 The C-terminai domain (CTD) of RNA
polymerase II 172
8.4 The links between splicing, transcription,
and chromatin 173
8.5 The spatial organization of pre-mRNA
processing 178
8.6 Histone mRNA 3 end formation 181
9 Nucleocytoplasmic traffic of messenger RNA 186
9.1 Step 1: mRNAs are dressed for export1
as they are synthesized by the addition
of nuclear export adaptors
9.2 Step 2: mRNA transcripts reach the nuclear
pore by random nuclear diffusion
9.3 Step 3: Transit through the nuclear pore
requires addition of nuclear export receptors
9.4 Step 4: Disassembly of the export
competent mRNP
9.5 Step 5: Export receptors shuttle between
the nucleus and the cytoplasm
9.6 mRNA export can be hijacked by
some viruses
9.7 mRNA export can become defective
in human diseases
10 Messenger RNA localization
10.1 The need for mRNA localization
10.2 The machinery of mRNA localization
10.3 Classical examples of mRNA localization
in development
188
193
194
199
200
201
202
205
205
207
209
Contents
10.4 Localization of mRNA in differentiated
somatic cells 212
10.5 Localization of mRNA in algae and plants 217
11 Translation of messenger RN A 222
11.1 What is translation? 222
11.2 The structure and function of the ribosome 222
11.3 Deciphering the genetic code 224
11.4 The three phases of translation 229
11.5 Regulation of m RN A translation 234
11.6 Masked messages 240
11.7 Manipulating translation 244
12 Stability and degradation of mRNA 250
12.1 Messenger RNAs have a half-life 250
12.2 Sites and mechanisms of mRNA
degradation 252
12.3 The process of mRNA degradation 253
12.4 Extracellular stimuli influence the
stability of mRNA 259
12.5 Nonsense-mediated, non-stop, and
no-go mRNA decay 260
12.6 Degradation of mRNA in bacteria and plants 264
13 RN A editing 268
13.1 What is RNA editing and why might it exist? 268
13.2 A-»l editing takes place by
modification of adenosine through
removal of an amino group 269
13.3 The biological consequences of A- 1 RNA
editing: adenosine and inosine form
different base pairs in RNA secondary
structure 271
13.4 What does A֊ l mRNA editing do? 272
13.5 A-И editing plays an important role
in the function of tRNAs 279
13.6 C֊ U RNA editing takes place through
base deamination (removal of an amino
group) of cytidine 281
13.7 C-»U RNA editing creates two different
forms of the APOB mRNA in different
tissues, and was the first RNA editing
reaction to be discovered in animals 281
13.8 APOB mRNAs are editing by an RNA
editing complex containing the cytidine
deaminase ApoBecI 283
13.9 ApoBec proteins play an important role in
innate immunity to retroviruses like HIV
and in generating an antibody response 284
13.10 Trypanosome mitochondrial RNA is
edited by base insertions and deletions to
create ORFs from frameshifted transcripts 287
13.11 RNA editing was discovered in
trypanosomes by sequencing cDNAs
encoded by mitochondrial genes 289
13.12 Short RNAs called guide RNAs target
trypanosome mitochondrial RNA editing 289
13.13 Guide RNAs are used as a template for
RNA editing through uridine insertions
and deletions 291
13.14 Trypanosome mitochondrial RNA editing
requires nuclear-encoded proteins which
might be useful therapeutic targets 291
14 The biogenesis and nucleocytoplasmic
traffic of non-coding RNAs 295
14.1 The snoRNAs and scaRNAs: multiple
roles in RNA biogenesis 296
14.2 Structure and function of the nucleolus 302
14.3 Processing of tRNA and of mitochondrial
transcripts 304
14.4 SMN proteins and snRNP assembly 309
14.5 Nucleocytoplasmic traffic of non-coding RNA 314
14.6 Retroviruses have hijacked the RNA export
machinery to assist in the export of
partially processed mRNAs 328
15 The macro1 RNAs: long non-coding
RNAs and epigenetics 334
15.1 Epigenetic regulation and the epigenetic
code 334
15.2 Long ncRNAs are involved in epigenetic
gene regulation of gene expression 337
15.3 A long ncRNA called XIST epigenetically
regulates the inactive X chromosome in
female mammals 338
15.4 The X inactivation centre contains a
number of non-coding RNAs as well as XIST 341
15.5 Non-placental mammals also use a long
non-coding RNA to inactivate an X
chromosome in females 342
15.6 Fruit flies use a long ncRNA to upregulate
expression from a single male X
chromosome 343
15.7 The logic of dosage compensation
strategies used in flies and mammals 344
15.8 Genetic imprinting uses long
non-coding RNAs 345
15.9 Transcription of the HI9 long non-coding
RNA acts as a decoy for transcription of
the IGF2 gene 347
15.10 The AIRN ncRNA epigenetically represses
IGF2R gene expression by directing
epigenetic chromatin modification 348
Contents
15.11 Long ncRNAs play an essential role in
establishing animal body plans 349
15.12 Long ncRNAs are involved in
transcriptional enhancer function 351
15.13 Antisense RNAs 352
16 The short non-coding RNAs and gene
silencing 358
16.1 Key concepts and common pathways 358
16.2 Discovery and mechanism of RNA
interference 363
16.3 The uses of RNA interference 366
16.4 Discovery, biogenesis, and developmental
roles of microRNAs 370
16.5 Transcriptional silencing by non-coding
RNAs in the centromere 376
16.6 RNA-induced transcriptional silencing
of transposons 379
17 RNA biology: future perspectives 390
17.1 The emergence of transcriptomics 390
17.2 The growing prominence of
non-coding RNAs 393
17.3 RNA-guided genome editing 397
17.4 Concluding remarks 400
Glossary 403
Index 415
|
any_adam_object | 1 |
author | Elliott, David 1965- Ladomery, Michael |
author_GND | (DE-588)1076802869 (DE-588)1082788074 |
author_facet | Elliott, David 1965- Ladomery, Michael |
author_role | aut aut |
author_sort | Elliott, David 1965- |
author_variant | d e de m l ml |
building | Verbundindex |
bvnumber | BV043256915 |
classification_rvk | WD 5355 |
ctrlnum | (OCoLC)952709595 (DE-599)BVBBV043256915 |
dewey-full | 572.88 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.88 |
dewey-search | 572.88 |
dewey-sort | 3572.88 |
dewey-tens | 570 - Biology |
discipline | Biologie |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02272nam a2200481 c 4500</leader><controlfield tag="001">BV043256915</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160414 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160107s2016 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199671397</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-19-967139-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)952709595</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043256915</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.88</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5355</subfield><subfield code="0">(DE-625)148201:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elliott, David</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1076802869</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular biology of RNA</subfield><subfield code="c">David Elliott, Institute of Genetic Medicine, Newcastle University; Michael Ladomery, Faculty of Health and Applied Science, University of the West of England, Bristol</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 426 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekulargenetik</subfield><subfield code="0">(DE-588)4039987-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">RNS</subfield><subfield code="0">(DE-588)4076759-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">RNS</subfield><subfield code="0">(DE-588)4076759-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">RNS</subfield><subfield code="0">(DE-588)4076759-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Molekulargenetik</subfield><subfield code="0">(DE-588)4039987-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ladomery, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082788074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028678934</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043256915 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:21:39Z |
institution | BVB |
isbn | 9780199671397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028678934 |
oclc_num | 952709595 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-20 DE-29T DE-19 DE-BY-UBM DE-703 |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-20 DE-29T DE-19 DE-BY-UBM DE-703 |
physical | viii, 426 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Oxford University Press |
record_format | marc |
spelling | Elliott, David 1965- Verfasser (DE-588)1076802869 aut Molecular biology of RNA David Elliott, Institute of Genetic Medicine, Newcastle University; Michael Ladomery, Faculty of Health and Applied Science, University of the West of England, Bristol Second edition Oxford Oxford University Press [2016] © 2016 viii, 426 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier Molecular biology RNA Molekulargenetik (DE-588)4039987-4 gnd rswk-swf RNS (DE-588)4076759-0 gnd rswk-swf Molekularbiologie (DE-588)4039983-7 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content RNS (DE-588)4076759-0 s Molekularbiologie (DE-588)4039983-7 s DE-604 Molekulargenetik (DE-588)4039987-4 s b DE-604 Ladomery, Michael Verfasser (DE-588)1082788074 aut Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Elliott, David 1965- Ladomery, Michael Molecular biology of RNA Molecular biology RNA Molekulargenetik (DE-588)4039987-4 gnd RNS (DE-588)4076759-0 gnd Molekularbiologie (DE-588)4039983-7 gnd |
subject_GND | (DE-588)4039987-4 (DE-588)4076759-0 (DE-588)4039983-7 (DE-588)4123623-3 |
title | Molecular biology of RNA |
title_auth | Molecular biology of RNA |
title_exact_search | Molecular biology of RNA |
title_full | Molecular biology of RNA David Elliott, Institute of Genetic Medicine, Newcastle University; Michael Ladomery, Faculty of Health and Applied Science, University of the West of England, Bristol |
title_fullStr | Molecular biology of RNA David Elliott, Institute of Genetic Medicine, Newcastle University; Michael Ladomery, Faculty of Health and Applied Science, University of the West of England, Bristol |
title_full_unstemmed | Molecular biology of RNA David Elliott, Institute of Genetic Medicine, Newcastle University; Michael Ladomery, Faculty of Health and Applied Science, University of the West of England, Bristol |
title_short | Molecular biology of RNA |
title_sort | molecular biology of rna |
topic | Molecular biology RNA Molekulargenetik (DE-588)4039987-4 gnd RNS (DE-588)4076759-0 gnd Molekularbiologie (DE-588)4039983-7 gnd |
topic_facet | Molecular biology RNA Molekulargenetik RNS Molekularbiologie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028678934&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT elliottdavid molecularbiologyofrna AT ladomerymichael molecularbiologyofrna |