Stochastic Calculus for Quantitative Finance:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
ISTE Press Ltd
2015
|
Schriftenreihe: | Optimization in insurance and finance set
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references and index In 1994 and 1998 F. Delbaen and W. Schachermayer published two breakthrough papers where they proved continuous-time versions of the Fundamental Theorem of Asset Pricing. This is one of the most remarkable achievements in modern Mathematical Finance which led to intensive investigations in many applications of the arbitrage theory on a mathematically rigorous basis of stochastic calculus. Mathematical Basis for Finance: Stochastic Calculus for Finance provides detailed knowledge of all necessary attributes in stochastic calculus that are required for applications of the theory of stochastic integration in Mathematical Finance, in particular, the arbitrage theory. The exposition follows the traditions of the Strasbourg school. This book covers the general theory of stochastic processes, local martingales and processes of bounded variation, the theory of stochastic integration, definition and properties of the stochastic exponential; a part of the theory of Lévy processes. Finally, the reader gets acquainted with some facts concerning stochastic differential equations |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780081004760 0081004761 9781785480348 1785480340 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043216509 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151216s2015 |||| o||u| ||||||eng d | ||
020 | |a 9780081004760 |9 978-0-08-100476-0 | ||
020 | |a 0081004761 |9 0-08-100476-1 | ||
020 | |a 9781785480348 |9 978-1-78548-034-8 | ||
020 | |a 1785480340 |9 1-78548-034-0 | ||
035 | |a (OCoLC)919317952 | ||
035 | |a (DE-599)BVBBV043216509 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 519.2 |2 23 | |
100 | 1 | |a Gushchin, Alexander A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Calculus for Quantitative Finance |c Alexander A. Gushchin |
264 | 1 | |a London |b ISTE Press Ltd |c 2015 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Optimization in insurance and finance set | |
500 | |a Includes bibliographical references and index | ||
500 | |a In 1994 and 1998 F. Delbaen and W. Schachermayer published two breakthrough papers where they proved continuous-time versions of the Fundamental Theorem of Asset Pricing. This is one of the most remarkable achievements in modern Mathematical Finance which led to intensive investigations in many applications of the arbitrage theory on a mathematically rigorous basis of stochastic calculus. Mathematical Basis for Finance: Stochastic Calculus for Finance provides detailed knowledge of all necessary attributes in stochastic calculus that are required for applications of the theory of stochastic integration in Mathematical Finance, in particular, the arbitrage theory. The exposition follows the traditions of the Strasbourg school. This book covers the general theory of stochastic processes, local martingales and processes of bounded variation, the theory of stochastic integration, definition and properties of the stochastic exponential; a part of the theory of Lévy processes. Finally, the reader gets acquainted with some facts concerning stochastic differential equations | ||
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Finance / Mathematical models |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Stochastic processes | |
650 | 4 | |a Finance |x Mathematical models | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9781785480348 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028639533 |
Datensatz im Suchindex
_version_ | 1804175721605627904 |
---|---|
any_adam_object | |
author | Gushchin, Alexander A. |
author_facet | Gushchin, Alexander A. |
author_role | aut |
author_sort | Gushchin, Alexander A. |
author_variant | a a g aa aag |
building | Verbundindex |
bvnumber | BV043216509 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)919317952 (DE-599)BVBBV043216509 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02612nmm a2200457zc 4500</leader><controlfield tag="001">BV043216509</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151216s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081004760</subfield><subfield code="9">978-0-08-100476-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0081004761</subfield><subfield code="9">0-08-100476-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781785480348</subfield><subfield code="9">978-1-78548-034-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1785480340</subfield><subfield code="9">1-78548-034-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)919317952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043216509</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gushchin, Alexander A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Calculus for Quantitative Finance</subfield><subfield code="c">Alexander A. Gushchin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE Press Ltd</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Optimization in insurance and finance set</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1994 and 1998 F. Delbaen and W. Schachermayer published two breakthrough papers where they proved continuous-time versions of the Fundamental Theorem of Asset Pricing. This is one of the most remarkable achievements in modern Mathematical Finance which led to intensive investigations in many applications of the arbitrage theory on a mathematically rigorous basis of stochastic calculus. Mathematical Basis for Finance: Stochastic Calculus for Finance provides detailed knowledge of all necessary attributes in stochastic calculus that are required for applications of the theory of stochastic integration in Mathematical Finance, in particular, the arbitrage theory. The exposition follows the traditions of the Strasbourg school. This book covers the general theory of stochastic processes, local martingales and processes of bounded variation, the theory of stochastic integration, definition and properties of the stochastic exponential; a part of the theory of Lévy processes. Finally, the reader gets acquainted with some facts concerning stochastic differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finance / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9781785480348</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028639533</subfield></datafield></record></collection> |
id | DE-604.BV043216509 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:20:47Z |
institution | BVB |
isbn | 9780081004760 0081004761 9781785480348 1785480340 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028639533 |
oclc_num | 919317952 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource |
psigel | ZDB-33-ESD ZDB-33-EBS FLA_PDA_ESD |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | ISTE Press Ltd |
record_format | marc |
series2 | Optimization in insurance and finance set |
spelling | Gushchin, Alexander A. Verfasser aut Stochastic Calculus for Quantitative Finance Alexander A. Gushchin London ISTE Press Ltd 2015 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Optimization in insurance and finance set Includes bibliographical references and index In 1994 and 1998 F. Delbaen and W. Schachermayer published two breakthrough papers where they proved continuous-time versions of the Fundamental Theorem of Asset Pricing. This is one of the most remarkable achievements in modern Mathematical Finance which led to intensive investigations in many applications of the arbitrage theory on a mathematically rigorous basis of stochastic calculus. Mathematical Basis for Finance: Stochastic Calculus for Finance provides detailed knowledge of all necessary attributes in stochastic calculus that are required for applications of the theory of stochastic integration in Mathematical Finance, in particular, the arbitrage theory. The exposition follows the traditions of the Strasbourg school. This book covers the general theory of stochastic processes, local martingales and processes of bounded variation, the theory of stochastic integration, definition and properties of the stochastic exponential; a part of the theory of Lévy processes. Finally, the reader gets acquainted with some facts concerning stochastic differential equations MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Finance / Mathematical models fast Stochastic processes fast Mathematisches Modell Stochastic processes Finance Mathematical models http://www.sciencedirect.com/science/book/9781785480348 Verlag Volltext |
spellingShingle | Gushchin, Alexander A. Stochastic Calculus for Quantitative Finance MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Finance / Mathematical models fast Stochastic processes fast Mathematisches Modell Stochastic processes Finance Mathematical models |
title | Stochastic Calculus for Quantitative Finance |
title_auth | Stochastic Calculus for Quantitative Finance |
title_exact_search | Stochastic Calculus for Quantitative Finance |
title_full | Stochastic Calculus for Quantitative Finance Alexander A. Gushchin |
title_fullStr | Stochastic Calculus for Quantitative Finance Alexander A. Gushchin |
title_full_unstemmed | Stochastic Calculus for Quantitative Finance Alexander A. Gushchin |
title_short | Stochastic Calculus for Quantitative Finance |
title_sort | stochastic calculus for quantitative finance |
topic | MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Finance / Mathematical models fast Stochastic processes fast Mathematisches Modell Stochastic processes Finance Mathematical models |
topic_facet | MATHEMATICS / Applied MATHEMATICS / Probability & Statistics / General Finance / Mathematical models Stochastic processes Mathematisches Modell Finance Mathematical models |
url | http://www.sciencedirect.com/science/book/9781785480348 |
work_keys_str_mv | AT gushchinalexandera stochasticcalculusforquantitativefinance |