Evolution equations of von Karman type:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2015]
|
Schriftenreihe: | Lecture Notes of the Unione Matematica Italiana
17 |
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online Ressource (XVI, 140 Seiten) |
ISBN: | 9783319209975 |
ISSN: | 1862-9113 |
DOI: | 10.1007/978-3-319-20997-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043209820 | ||
003 | DE-604 | ||
005 | 20200929 | ||
007 | cr|uuu---uuuuu | ||
008 | 151215s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319209975 |c Online |9 978-3-319-20997-5 | ||
024 | 7 | |a 10.1007/978-3-319-20997-5 |2 doi | |
035 | |a (OCoLC)930001551 | ||
035 | |a (DE-599)BVBBV043209820 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cherrier, Pascal |d 1950- |e Verfasser |0 (DE-588)1025880838 |4 aut | |
245 | 1 | 0 | |a Evolution equations of von Karman type |c Pascal Cherrier, Albert Milani |
264 | 1 | |a Cham |b Springer |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 Online Ressource (XVI, 140 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes of the Unione Matematica Italiana |v 17 |x 1862-9113 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Differential geometry | |
650 | 4 | |a Physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Milani, Albert |e Verfasser |0 (DE-588)1027129056 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-20996-8 |
830 | 0 | |a Lecture Notes of the Unione Matematica Italiana |v 17 |w (DE-604)BV035421262 |9 17 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-20997-5 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028632981 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-20997-5 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20997-5 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20997-5 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20997-5 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20997-5 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20997-5 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20997-5 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175709351968768 |
---|---|
adam_text | EVOLUTION EQUATIONS OF VON KARMAN TYPE
/ CHERRIER, PASCAL
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
OPERATORS AND SPACES
WEAK SOLUTIONS
STRONG SOLUTIONS, M + K _ 4
SEMI-STRONG SOLUTIONS, M = 2, K = 1
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
EVOLUTION EQUATIONS OF VON KARMAN TYPE
/ CHERRIER, PASCAL
: 2015
ABSTRACT / INHALTSTEXT
IN THESE NOTES WE CONSIDER TWO KINDS OF NONLINEAR EVOLUTION PROBLEMS OF
VON KARMAN TYPE ON EUCLIDEAN SPACES OF ARBITRARY EVEN DIMENSION. EACH OF
THESE PROBLEMS CONSISTS OF A SYSTEM THAT RESULTS FROM THE COUPLING OF
TWO HIGHLY NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, ONE HYPERBOLIC OR
PARABOLIC AND THE OTHER ELLIPTIC. THESE SYSTEMS TAKE THEIR NAME FROM A
FORMAL ANALOGY WITH THE VON KARMAN EQUATIONS IN THE THEORY OF ELASTICITY
IN TWO DIMENSIONAL SPACE. WE ESTABLISH LOCAL (RESPECTIVELY GLOBAL)
RESULTS FOR STRONG (RESP., WEAK) SOLUTIONS OF THESE PROBLEMS AND
CORRESPONDING WELL-POSEDNESS RESULTS IN THE HADAMARD SENSE. RESULTS ARE
FOUND BY OBTAINING REGULARITY ESTIMATES ON SOLUTIONS WHICH ARE LIMITS OF
A SUITABLE GALERKIN APPROXIMATION SCHEME. THE BOOK IS INTENDED AS A
PEDAGOGICAL INTRODUCTION TO A NUMBER OF MEANINGFUL APPLICATION OF
CLASSICAL METHODS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF
EVOLUTION. THE MATERIAL IS SELF-CONTAINED AND MOST PROOFS ARE GIVEN IN
FULL DETAIL. THE INTERESTED READER WILL GAIN A DEEPER INSIGHT INTO THE
POWER OF NONTRIVIAL A PRIORI ESTIMATE METHODS IN THE QUALITATIVE STUDY
OF NONLINEAR DIFFERENTIAL EQUATIONS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Cherrier, Pascal 1950- Milani, Albert |
author_GND | (DE-588)1025880838 (DE-588)1027129056 |
author_facet | Cherrier, Pascal 1950- Milani, Albert |
author_role | aut aut |
author_sort | Cherrier, Pascal 1950- |
author_variant | p c pc a m am |
building | Verbundindex |
bvnumber | BV043209820 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)930001551 (DE-599)BVBBV043209820 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-20997-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02889nmm a2200601zcb4500</leader><controlfield tag="001">BV043209820</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151215s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319209975</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-20997-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-20997-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)930001551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043209820</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cherrier, Pascal</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1025880838</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution equations of von Karman type</subfield><subfield code="c">Pascal Cherrier, Albert Milani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (XVI, 140 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">17</subfield><subfield code="x">1862-9113</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milani, Albert</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027129056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-20996-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes of the Unione Matematica Italiana</subfield><subfield code="v">17</subfield><subfield code="w">(DE-604)BV035421262</subfield><subfield code="9">17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028632981</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20997-5</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043209820 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:20:36Z |
institution | BVB |
isbn | 9783319209975 |
issn | 1862-9113 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028632981 |
oclc_num | 930001551 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online Ressource (XVI, 140 Seiten) |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series | Lecture Notes of the Unione Matematica Italiana |
series2 | Lecture notes of the Unione Matematica Italiana |
spelling | Cherrier, Pascal 1950- Verfasser (DE-588)1025880838 aut Evolution equations of von Karman type Pascal Cherrier, Albert Milani Cham Springer [2015] © 2015 1 Online Ressource (XVI, 140 Seiten) txt rdacontent c rdamedia cr rdacarrier Lecture notes of the Unione Matematica Italiana 17 1862-9113 Mathematics Partial differential equations Differential geometry Physics Partial Differential Equations Mathematical Methods in Physics Differential Geometry Mathematik Milani, Albert Verfasser (DE-588)1027129056 aut Erscheint auch als Druckausgabe 978-3-319-20996-8 Lecture Notes of the Unione Matematica Italiana 17 (DE-604)BV035421262 17 https://doi.org/10.1007/978-3-319-20997-5 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Cherrier, Pascal 1950- Milani, Albert Evolution equations of von Karman type Lecture Notes of the Unione Matematica Italiana Mathematics Partial differential equations Differential geometry Physics Partial Differential Equations Mathematical Methods in Physics Differential Geometry Mathematik |
title | Evolution equations of von Karman type |
title_auth | Evolution equations of von Karman type |
title_exact_search | Evolution equations of von Karman type |
title_full | Evolution equations of von Karman type Pascal Cherrier, Albert Milani |
title_fullStr | Evolution equations of von Karman type Pascal Cherrier, Albert Milani |
title_full_unstemmed | Evolution equations of von Karman type Pascal Cherrier, Albert Milani |
title_short | Evolution equations of von Karman type |
title_sort | evolution equations of von karman type |
topic | Mathematics Partial differential equations Differential geometry Physics Partial Differential Equations Mathematical Methods in Physics Differential Geometry Mathematik |
topic_facet | Mathematics Partial differential equations Differential geometry Physics Partial Differential Equations Mathematical Methods in Physics Differential Geometry Mathematik |
url | https://doi.org/10.1007/978-3-319-20997-5 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632981&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035421262 |
work_keys_str_mv | AT cherrierpascal evolutionequationsofvonkarmantype AT milanialbert evolutionequationsofvonkarmantype |