Geometry of hypersurfaces:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York ; Heidelberg ; Dordrecht ; London
Springer
[2015]
|
Schriftenreihe: | Springer monographs in mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online Ressource (XI, 596 Seiten) Illustrationen, Diagramme |
ISBN: | 9781493932467 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-1-4939-3246-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043209697 | ||
003 | DE-604 | ||
005 | 20201203 | ||
007 | cr|uuu---uuuuu | ||
008 | 151215s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781493932467 |c Online |9 978-1-4939-3246-7 | ||
024 | 7 | |a 10.1007/978-1-4939-3246-7 |2 doi | |
035 | |a (OCoLC)930013721 | ||
035 | |a (DE-599)BVBBV043209697 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cecil, Thomas E. |d 1945- |0 (DE-588)102959354X |4 aut | |
245 | 1 | 0 | |a Geometry of hypersurfaces |c Thomas E. Cecil, Patrick J. Ryan |
264 | 1 | |a New York ; Heidelberg ; Dordrecht ; London |b Springer |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 Online Ressource (XI, 596 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer monographs in mathematics |x 1439-7382 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Differential geometry | |
650 | 4 | |a Hyperbolic geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Hyperbolic Geometry | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Ryan, Patrick J. |0 (DE-588)108226007X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4939-3245-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-4939-3245-0 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4939-3246-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028632857 | ||
966 | e | |u https://doi.org/10.1007/978-1-4939-3246-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-3246-7 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-3246-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-3246-7 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-3246-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-3246-7 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-3246-7 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175709033201664 |
---|---|
adam_text | GEOMETRY OF HYPERSURFACES
/ CECIL, THOMAS E.
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE
1. INTRODUCTION
2. SUBMANIFOLDS OF REAL SPACE FORMS
3. ISOPARAMETRIC HYPERSURFACES
4. SUBMANIFOLDS IN LIE SPHERE GEOMETRY
5. DUPIN HYPERSURFACES
6. REAL HYPERSURFACES IN COMPLEX SPACE FORMS
7. COMPLEX SUBMANIFOLDS OF CPN AND CHN
8. HOPF HYPERSURFACES
9. HYPERSURFACES IN QUATERNIONIC SPACE FORMS
APPENDIX A. SUMMARY OF NOTATION
REFERENCES
INDEX
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
GEOMETRY OF HYPERSURFACES
/ CECIL, THOMAS E.
: 2015
ABSTRACT / INHALTSTEXT
THIS EXPOSITION PROVIDES THE STATE-OF-THE ART ON THE DIFFERENTIAL
GEOMETRY OF HYPERSURFACES IN REAL, COMPLEX, AND QUATERNIONIC SPACE
FORMS. SPECIAL EMPHASIS IS PLACED ON ISOPARAMETRIC AND DUPIN
HYPERSURFACES IN REAL SPACE FORMS AS WELL AS HOPF HYPERSURFACES IN
COMPLEX SPACE FORMS. THE BOOK IS ACCESSIBLE TO A READER WHO HAS
COMPLETED A ONE-YEAR GRADUATE COURSE IN DIFFERENTIAL GEOMETRY. THE TEXT,
INCLUDING OPEN PROBLEMS AND AN EXTENSIVE LIST OF REFERENCES, IS AN
EXCELLENT RESOURCE FOR RESEARCHERS IN THIS AREA. GEOMETRY OF
HYPERSURFACES BEGINS WITH THE BASIC THEORY OF SUBMANIFOLDS IN REAL SPACE
FORMS. TOPICS INCLUDE SHAPE OPERATORS, PRINCIPAL CURVATURES AND
FOLIATIONS, TUBES AND PARALLEL HYPERSURFACES, CURVATURE SPHERES AND
FOCAL SUBMANIFOLDS. THE FOCUS THEN TURNS TO THE THEORY OF ISOPARAMETRIC
HYPERSURFACES IN SPHERES. IMPORTANT EXAMPLES AND CLASSIFICATION RESULTS
ARE GIVEN, INCLUDING THE CONSTRUCTION OF ISOPARAMETRIC HYPERSURFACES
BASED ON REPRESENTATIONS OF CLIFFORD ALGEBRAS. AN IN-DEPTH TREATMENT OF
DUPIN HYPERSURFACES FOLLOWS WITH RESULTS THAT ARE PROVED IN THE CONTEXT
OF LIE SPHERE GEOMETRY AS WELL AS THOSE THAT ARE OBTAINED USING STANDARD
METHODS OF SUBMANIFOLD THEORY. NEXT COMES A THOROUGH TREATMENT OF THE
THEORY OF REAL HYPERSURFACES IN COMPLEX SPACE FORMS. A CENTRAL FOCUS IS
A COMPLETE PROOF OF THE CLASSIFICATION OF HOPF HYPERSURFACES WITH
CONSTANT PRINCIPAL CURVATURES DUE TO KIMURA AND BERNDT. THE BOOK
CONCLUDES WITH THE BASIC THEORY OF REAL HYPERSURFACES IN QUATERNIONIC
SPACE FORMS, INCLUDING STATEMENTS OF THE MAJOR CLASSIFICATION RESULTS
AND DIRECTIONS FOR FURTHER RESEARCH
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Cecil, Thomas E. 1945- Ryan, Patrick J. |
author_GND | (DE-588)102959354X (DE-588)108226007X |
author_facet | Cecil, Thomas E. 1945- Ryan, Patrick J. |
author_role | aut aut |
author_sort | Cecil, Thomas E. 1945- |
author_variant | t e c te tec p j r pj pjr |
building | Verbundindex |
bvnumber | BV043209697 |
classification_rvk | SK 370 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)930013721 (DE-599)BVBBV043209697 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4939-3246-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02971nmm a2200625zc 4500</leader><controlfield tag="001">BV043209697</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201203 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151215s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493932467</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4939-3246-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4939-3246-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)930013721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043209697</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cecil, Thomas E.</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)102959354X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of hypersurfaces</subfield><subfield code="c">Thomas E. Cecil, Patrick J. Ryan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Heidelberg ; Dordrecht ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (XI, 596 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer monographs in mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryan, Patrick J.</subfield><subfield code="0">(DE-588)108226007X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4939-3245-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-4939-3245-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028632857</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-3246-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043209697 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:20:35Z |
institution | BVB |
isbn | 9781493932467 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028632857 |
oclc_num | 930013721 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online Ressource (XI, 596 Seiten) Illustrationen, Diagramme |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series2 | Springer monographs in mathematics |
spelling | Cecil, Thomas E. 1945- (DE-588)102959354X aut Geometry of hypersurfaces Thomas E. Cecil, Patrick J. Ryan New York ; Heidelberg ; Dordrecht ; London Springer [2015] © 2015 1 Online Ressource (XI, 596 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Springer monographs in mathematics 1439-7382 Mathematics Topological groups Lie groups Differential geometry Hyperbolic geometry Differential Geometry Topological Groups, Lie Groups Hyperbolic Geometry Mathematik Ryan, Patrick J. (DE-588)108226007X aut Erscheint auch als Druck-Ausgabe 978-1-4939-3245-0 Erscheint auch als Druckausgabe 978-1-4939-3245-0 https://doi.org/10.1007/978-1-4939-3246-7 Verlag URL des Erstveröffentlichers Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Cecil, Thomas E. 1945- Ryan, Patrick J. Geometry of hypersurfaces Mathematics Topological groups Lie groups Differential geometry Hyperbolic geometry Differential Geometry Topological Groups, Lie Groups Hyperbolic Geometry Mathematik |
title | Geometry of hypersurfaces |
title_auth | Geometry of hypersurfaces |
title_exact_search | Geometry of hypersurfaces |
title_full | Geometry of hypersurfaces Thomas E. Cecil, Patrick J. Ryan |
title_fullStr | Geometry of hypersurfaces Thomas E. Cecil, Patrick J. Ryan |
title_full_unstemmed | Geometry of hypersurfaces Thomas E. Cecil, Patrick J. Ryan |
title_short | Geometry of hypersurfaces |
title_sort | geometry of hypersurfaces |
topic | Mathematics Topological groups Lie groups Differential geometry Hyperbolic geometry Differential Geometry Topological Groups, Lie Groups Hyperbolic Geometry Mathematik |
topic_facet | Mathematics Topological groups Lie groups Differential geometry Hyperbolic geometry Differential Geometry Topological Groups, Lie Groups Hyperbolic Geometry Mathematik |
url | https://doi.org/10.1007/978-1-4939-3246-7 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632857&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cecilthomase geometryofhypersurfaces AT ryanpatrickj geometryofhypersurfaces |