Arithmetically Cohen-Macaulay sets of points in P 1 x P 1:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2015]
|
Schriftenreihe: | SpringerBriefs in mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online Ressource (VIII, 134 Seiten, 25 illus. in color) |
ISBN: | 9783319241661 |
ISSN: | 2191-8198 |
DOI: | 10.1007/978-3-319-24166-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043209165 | ||
003 | DE-604 | ||
005 | 20200929 | ||
007 | cr|uuu---uuuuu | ||
008 | 151215s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319241661 |c Online |9 978-3-319-24166-1 | ||
024 | 7 | |a 10.1007/978-3-319-24166-1 |2 doi | |
035 | |a (OCoLC)932042844 | ||
035 | |a (DE-599)BVBBV043209165 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 512.44 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Guardo, Elena |e Verfasser |0 (DE-588)1081845627 |4 aut | |
245 | 1 | 0 | |a Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 |c Elena Guardo, Adam Van Tuyl |
264 | 1 | |a Cham |b Springer |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 Online Ressource (VIII, 134 Seiten, 25 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in mathematics |x 2191-8198 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic geometry | |
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Commutative rings | |
650 | 4 | |a Projective geometry | |
650 | 4 | |a Commutative Rings and Algebras | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Projective Geometry | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Van Tuyl, Adam |e Verfasser |0 (DE-588)1082254479 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-24164-7 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-24166-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028632326 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-24166-1 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-24166-1 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-24166-1 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-24166-1 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-24166-1 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-24166-1 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-24166-1 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175707679490048 |
---|---|
adam_text | ARITHMETICALLY COHEN-MACAULAY SETS OF POINTS IN P^1 X P^1
/ GUARDO, ELENA
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
THE BIPROJECTIVE SPACE P^1 X P^1
POINTS IN P^1 X P^1
CLASSIFICATION OF ACM SETS OF POINTS IN P^1 X P^1
HOMOLOGICAL INVARIANTS
FAT POINTS IN P^1 X P^1
DOUBLE POINTS AND THEIR RESOLUTION
APPLICATIONS
REFERENCES
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
ARITHMETICALLY COHEN-MACAULAY SETS OF POINTS IN P^1 X P^1
/ GUARDO, ELENA
: 2015
ABSTRACT / INHALTSTEXT
THIS BRIEF PRESENTS A SOLUTION TO THE INTERPOLATION PROBLEM FOR
ARITHMETICALLY COHEN-MACAULAY (ACM) SETS OF POINTS IN THE
MULTIPROJECTIVE SPACE P^1 X P^1. IT COLLECTS THE VARIOUS CURRENT
THREADS IN THE LITERATURE ON THIS TOPIC WITH THE AIM OF PROVIDING A
SELF-CONTAINED, UNIFIED INTRODUCTION WHILE ALSO ADVANCING SOME NEW
IDEAS. THE RELEVANT CONSTRUCTIONS RELATED TO MULTIPROJECTIVE SPACES
ARE REVIEWED FIRST, FOLLOWED BY THE BASIC PROPERTIES OF POINTS IN P^1 X
P^1, THE BIGRADED HILBERT FUNCTION, AND ACM SETS OF POINTS. THE
AUTHORS THEN SHOW HOW, USING A COMBINATORIAL DESCRIPTION OF ACM POINTS
IN P^1 X P^1, THE BIGRADED HILBERT FUNCTION CAN BE COMPUTED AND, AS A
RESULT, SOLVE THE INTERPOLATION PROBLEM. IN SUBSEQUENT CHAPTERS, THEY
CONSIDER FAT POINTS AND DOUBLE POINTS IN P^1 X P^1 AND DEMONSTRATE HOW
TO USE THEIR RESULTS TO ANSWER QUESTIONS AND PROBLEMS OF INTEREST IN
COMMUTATIVE ALGEBRA. THROUGHOUT THE BOOK, CHAPTERS END WITH A BRIEF
HISTORICAL OVERVIEW, CITATIONS OF RELATED RESULTS, AND, WHERE RELEVANT,
OPEN QUESTIONS THAT MAY INSPIRE FUTURE RESEARCH. GRADUATE STUDENTS AND
RESEARCHERS WORKING IN ALGEBRAIC GEOMETRY AND COMMUTATIVE ALGEBRA WILL
FIND THIS BOOK TO BE A VALUABLE CONTRIBUTION TO THE LITERATURE
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Guardo, Elena Van Tuyl, Adam |
author_GND | (DE-588)1081845627 (DE-588)1082254479 |
author_facet | Guardo, Elena Van Tuyl, Adam |
author_role | aut aut |
author_sort | Guardo, Elena |
author_variant | e g eg t a v ta tav |
building | Verbundindex |
bvnumber | BV043209165 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)932042844 (DE-599)BVBBV043209165 |
dewey-full | 512.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.44 |
dewey-search | 512.44 |
dewey-sort | 3512.44 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-24166-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02848nmm a2200601zc 4500</leader><controlfield tag="001">BV043209165</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151215s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319241661</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-24166-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-24166-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)932042844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043209165</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.44</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guardo, Elena</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1081845627</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetically Cohen-Macaulay sets of points in P 1 x P 1</subfield><subfield code="c">Elena Guardo, Adam Van Tuyl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (VIII, 134 Seiten, 25 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in mathematics</subfield><subfield code="x">2191-8198</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Tuyl, Adam</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082254479</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-24164-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028632326</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-24166-1</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043209165 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:20:34Z |
institution | BVB |
isbn | 9783319241661 |
issn | 2191-8198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028632326 |
oclc_num | 932042844 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online Ressource (VIII, 134 Seiten, 25 illus. in color) |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series2 | SpringerBriefs in mathematics |
spelling | Guardo, Elena Verfasser (DE-588)1081845627 aut Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 Elena Guardo, Adam Van Tuyl Cham Springer [2015] © 2015 1 Online Ressource (VIII, 134 Seiten, 25 illus. in color) txt rdacontent c rdamedia cr rdacarrier SpringerBriefs in mathematics 2191-8198 Mathematics Algebraic geometry Commutative algebra Commutative rings Projective geometry Commutative Rings and Algebras Algebraic Geometry Projective Geometry Mathematik Van Tuyl, Adam Verfasser (DE-588)1082254479 aut Erscheint auch als Druckausgabe 978-3-319-24164-7 https://doi.org/10.1007/978-3-319-24166-1 Verlag URL des Erstveröffentlichers Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Guardo, Elena Van Tuyl, Adam Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 Mathematics Algebraic geometry Commutative algebra Commutative rings Projective geometry Commutative Rings and Algebras Algebraic Geometry Projective Geometry Mathematik |
title | Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 |
title_auth | Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 |
title_exact_search | Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 |
title_full | Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 Elena Guardo, Adam Van Tuyl |
title_fullStr | Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 Elena Guardo, Adam Van Tuyl |
title_full_unstemmed | Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 Elena Guardo, Adam Van Tuyl |
title_short | Arithmetically Cohen-Macaulay sets of points in P 1 x P 1 |
title_sort | arithmetically cohen macaulay sets of points in p 1 x p 1 |
topic | Mathematics Algebraic geometry Commutative algebra Commutative rings Projective geometry Commutative Rings and Algebras Algebraic Geometry Projective Geometry Mathematik |
topic_facet | Mathematics Algebraic geometry Commutative algebra Commutative rings Projective geometry Commutative Rings and Algebras Algebraic Geometry Projective Geometry Mathematik |
url | https://doi.org/10.1007/978-3-319-24166-1 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632326&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT guardoelena arithmeticallycohenmacaulaysetsofpointsinp1xp1 AT vantuyladam arithmeticallycohenmacaulaysetsofpointsinp1xp1 |