Python text processing with NLTK 2.0 Cookbook: over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
PACKT Publishing
2010
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | "Open source community experience distilled.". - "Quick answers to common problems"--Cover. - Includes index Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- Table of Contents -- Preface -- Chapter 1: Tokenizing Text and Wordnet Basics -- Introduction -- Tokenizing Text Into Sentences -- Tokenizing Sentences Into Words -- Tokenizing Sentences Using Regular -- Expressions -- Filtering Stopwords in a Tokenized Sentence -- Looking Up Synsets for a Word in Wordnet -- Looking Up Lemmas and Synonyms -- in Wordnet -- Calculating Wordnet Synset Similarity -- Discovering Word Collocations -- Chapter 2: Replacing and Correcting Words -- Introduction -- Stemming Words -- Lemmatizing Words With Wordnet -- Translating Text With Babelfish -- Replacing Words Matching Regular -- Removing Repeating Characters -- Spelling Correction With Enchant -- Replacing Synonyms -- Replacing Negations With Antonyms -- Chapter 3: Creating Custom Corpora -- Introduction -- Setting Up a Custom Corpus -- Creating a Word List Corpus -- Creating a Part-of-Speech Tagged Word -- Corpus -- - Creating a Chunked Phrase Corpus -- Creating a Categorized Text Corpus -- Creating a Categorized Chunk Corpus Reader -- Lazy Corpus Loading -- Creating a Custom Corpus View -- Creating a Mongodb Backed Corpus Reader -- Corpus Editing With File Locking -- Chapter 4: Part-of-Speech Tagging -- Introduction -- Default Tagging -- Training a Unigram Part-of-Speech Tagger -- Combining Taggers With Backoff Tagging -- Training and Combining Ngram Taggers -- Creating a Model of Likely Word Tags -- Tagging With Regular Expressions -- Affix Tagging -- Training a Brill Tagger -- Training the Tnt Tagger -- Using Wordnet for Tagging -- Tagging Proper Names -- Classifier Based Tagging -- Chapter 5: Extracting Chunks -- Introduction -- Chunking and Chinking With Regular -- Merging and Splitting Chunks With Regular Expressions -- Expanding and Removing Chunks With -- Regular Expressions -- Partial Parsing With Regular Expressions -- Training a Tagger-Based Chunker -- Classification-Based Chunking -- - Extracting Named Entities -- Extracting Proper Noun Chunks -- Extracting Location Chunks -- Training a Named Entity Chunker -- Chapter 6: Transforming Chunks and Trees -- Introduction -- Filtering Insignificant Words -- Correcting Verb Forms -- Swapping Verb Phrases -- Swapping Noun Cardinals -- Swapping Infinitive Phrases -- Singularizing Plural Nouns -- Chaining Chunk Transformations -- Converting a Chunk Tree to Text -- Flattening a Deep Tree -- Creating a Shallow Tree -- Converting Tree Nodes -- Chapter 7: Text Classification -- Introduction -- Bag of Words Feature Extraction -- Training a Naive Bayes Classifier -- Training a Decision Tree Classifier -- Training a Maximum Entropy Classifier -- Measuring Precision and Recall of a -- Classifier -- Calculating High Information Words -- Combining Classifiers With Voting -- Classifying With Multiple Binary Classifiers -- Chapte The learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward. This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable |
Beschreibung: | 1 Online-Ressource (iii, 256 pages) |
ISBN: | 1282905155 1849513600 1849513619 9781282905153 9781849513609 9781849513616 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043171205 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 1282905155 |9 1-282-90515-5 | ||
020 | |a 1849513600 |9 1-84951-360-0 | ||
020 | |a 1849513619 |9 1-84951-361-9 | ||
020 | |a 9781282905153 |9 978-1-282-90515-3 | ||
020 | |a 9781849513609 |9 978-1-84951-360-9 | ||
020 | |a 9781849513616 |9 978-1-84951-361-6 | ||
035 | |a (OCoLC)775351847 | ||
035 | |a (DE-599)BVBBV043171205 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 005.133 |2 22 | |
100 | 1 | |a Perkins, Jacob |e Verfasser |4 aut | |
245 | 1 | 0 | |a Python text processing with NLTK 2.0 Cookbook |b over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities |c Jacob Perkins |
246 | 1 | 3 | |a Over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities |
246 | 1 | 3 | |a Over 80 practical recipes for using Python's Natural Language Toolkit suite of libraries to maximize your natural language processing capabilities |
264 | 1 | |a Birmingham |b PACKT Publishing |c 2010 | |
300 | |a 1 Online-Ressource (iii, 256 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "Open source community experience distilled.". - "Quick answers to common problems"--Cover. - Includes index | ||
500 | |a Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- Table of Contents -- Preface -- Chapter 1: Tokenizing Text and Wordnet Basics -- Introduction -- Tokenizing Text Into Sentences -- Tokenizing Sentences Into Words -- Tokenizing Sentences Using Regular -- Expressions -- Filtering Stopwords in a Tokenized Sentence -- Looking Up Synsets for a Word in Wordnet -- Looking Up Lemmas and Synonyms -- in Wordnet -- Calculating Wordnet Synset Similarity -- Discovering Word Collocations -- Chapter 2: Replacing and Correcting Words -- Introduction -- Stemming Words -- Lemmatizing Words With Wordnet -- Translating Text With Babelfish -- Replacing Words Matching Regular -- Removing Repeating Characters -- Spelling Correction With Enchant -- Replacing Synonyms -- Replacing Negations With Antonyms -- Chapter 3: Creating Custom Corpora -- Introduction -- Setting Up a Custom Corpus -- Creating a Word List Corpus -- Creating a Part-of-Speech Tagged Word -- Corpus -- | ||
500 | |a - Creating a Chunked Phrase Corpus -- Creating a Categorized Text Corpus -- Creating a Categorized Chunk Corpus Reader -- Lazy Corpus Loading -- Creating a Custom Corpus View -- Creating a Mongodb Backed Corpus Reader -- Corpus Editing With File Locking -- Chapter 4: Part-of-Speech Tagging -- Introduction -- Default Tagging -- Training a Unigram Part-of-Speech Tagger -- Combining Taggers With Backoff Tagging -- Training and Combining Ngram Taggers -- Creating a Model of Likely Word Tags -- Tagging With Regular Expressions -- Affix Tagging -- Training a Brill Tagger -- Training the Tnt Tagger -- Using Wordnet for Tagging -- Tagging Proper Names -- Classifier Based Tagging -- Chapter 5: Extracting Chunks -- Introduction -- Chunking and Chinking With Regular -- Merging and Splitting Chunks With Regular Expressions -- Expanding and Removing Chunks With -- Regular Expressions -- Partial Parsing With Regular Expressions -- Training a Tagger-Based Chunker -- Classification-Based Chunking -- | ||
500 | |a - Extracting Named Entities -- Extracting Proper Noun Chunks -- Extracting Location Chunks -- Training a Named Entity Chunker -- Chapter 6: Transforming Chunks and Trees -- Introduction -- Filtering Insignificant Words -- Correcting Verb Forms -- Swapping Verb Phrases -- Swapping Noun Cardinals -- Swapping Infinitive Phrases -- Singularizing Plural Nouns -- Chaining Chunk Transformations -- Converting a Chunk Tree to Text -- Flattening a Deep Tree -- Creating a Shallow Tree -- Converting Tree Nodes -- Chapter 7: Text Classification -- Introduction -- Bag of Words Feature Extraction -- Training a Naive Bayes Classifier -- Training a Decision Tree Classifier -- Training a Maximum Entropy Classifier -- Measuring Precision and Recall of a -- Classifier -- Calculating High Information Words -- Combining Classifiers With Voting -- Classifying With Multiple Binary Classifiers -- Chapte | ||
500 | |a The learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward. This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable | ||
650 | 7 | |a COMPUTERS / Programming Languages / C♯ |2 bisacsh | |
650 | 7 | |a COMPUTERS / Programming Languages / Java |2 bisacsh | |
650 | 7 | |a COMPUTERS / Programming Languages / Pascal |2 bisacsh | |
650 | 7 | |a Natural language processing (Computer science) |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 7 | |a Python (Computer program language) |2 local | |
650 | 7 | |a Natural language processing (Computer science) |2 local | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Natural language processing (Computer science) | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 1 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028595396 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175651567042560 |
---|---|
any_adam_object | |
author | Perkins, Jacob |
author_facet | Perkins, Jacob |
author_role | aut |
author_sort | Perkins, Jacob |
author_variant | j p jp |
building | Verbundindex |
bvnumber | BV043171205 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)775351847 (DE-599)BVBBV043171205 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06614nmm a2200637zc 4500</leader><controlfield tag="001">BV043171205</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282905155</subfield><subfield code="9">1-282-90515-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1849513600</subfield><subfield code="9">1-84951-360-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1849513619</subfield><subfield code="9">1-84951-361-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282905153</subfield><subfield code="9">978-1-282-90515-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781849513609</subfield><subfield code="9">978-1-84951-360-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781849513616</subfield><subfield code="9">978-1-84951-361-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775351847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043171205</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Perkins, Jacob</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python text processing with NLTK 2.0 Cookbook</subfield><subfield code="b">over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities</subfield><subfield code="c">Jacob Perkins</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Over 80 practical recipes for using Python's Natural Language Toolkit suite of libraries to maximize your natural language processing capabilities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">PACKT Publishing</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (iii, 256 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Open source community experience distilled.". - "Quick answers to common problems"--Cover. - Includes index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- Table of Contents -- Preface -- Chapter 1: Tokenizing Text and Wordnet Basics -- Introduction -- Tokenizing Text Into Sentences -- Tokenizing Sentences Into Words -- Tokenizing Sentences Using Regular -- Expressions -- Filtering Stopwords in a Tokenized Sentence -- Looking Up Synsets for a Word in Wordnet -- Looking Up Lemmas and Synonyms -- in Wordnet -- Calculating Wordnet Synset Similarity -- Discovering Word Collocations -- Chapter 2: Replacing and Correcting Words -- Introduction -- Stemming Words -- Lemmatizing Words With Wordnet -- Translating Text With Babelfish -- Replacing Words Matching Regular -- Removing Repeating Characters -- Spelling Correction With Enchant -- Replacing Synonyms -- Replacing Negations With Antonyms -- Chapter 3: Creating Custom Corpora -- Introduction -- Setting Up a Custom Corpus -- Creating a Word List Corpus -- Creating a Part-of-Speech Tagged Word -- Corpus -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Creating a Chunked Phrase Corpus -- Creating a Categorized Text Corpus -- Creating a Categorized Chunk Corpus Reader -- Lazy Corpus Loading -- Creating a Custom Corpus View -- Creating a Mongodb Backed Corpus Reader -- Corpus Editing With File Locking -- Chapter 4: Part-of-Speech Tagging -- Introduction -- Default Tagging -- Training a Unigram Part-of-Speech Tagger -- Combining Taggers With Backoff Tagging -- Training and Combining Ngram Taggers -- Creating a Model of Likely Word Tags -- Tagging With Regular Expressions -- Affix Tagging -- Training a Brill Tagger -- Training the Tnt Tagger -- Using Wordnet for Tagging -- Tagging Proper Names -- Classifier Based Tagging -- Chapter 5: Extracting Chunks -- Introduction -- Chunking and Chinking With Regular -- Merging and Splitting Chunks With Regular Expressions -- Expanding and Removing Chunks With -- Regular Expressions -- Partial Parsing With Regular Expressions -- Training a Tagger-Based Chunker -- Classification-Based Chunking -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Extracting Named Entities -- Extracting Proper Noun Chunks -- Extracting Location Chunks -- Training a Named Entity Chunker -- Chapter 6: Transforming Chunks and Trees -- Introduction -- Filtering Insignificant Words -- Correcting Verb Forms -- Swapping Verb Phrases -- Swapping Noun Cardinals -- Swapping Infinitive Phrases -- Singularizing Plural Nouns -- Chaining Chunk Transformations -- Converting a Chunk Tree to Text -- Flattening a Deep Tree -- Creating a Shallow Tree -- Converting Tree Nodes -- Chapter 7: Text Classification -- Introduction -- Bag of Words Feature Extraction -- Training a Naive Bayes Classifier -- Training a Decision Tree Classifier -- Training a Maximum Entropy Classifier -- Measuring Precision and Recall of a -- Classifier -- Calculating High Information Words -- Combining Classifiers With Voting -- Classifying With Multiple Binary Classifiers -- Chapte</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward. This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / C♯</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Java</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Pascal</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028595396</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043171205 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:41Z |
institution | BVB |
isbn | 1282905155 1849513600 1849513619 9781282905153 9781849513609 9781849513616 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028595396 |
oclc_num | 775351847 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (iii, 256 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | PACKT Publishing |
record_format | marc |
spelling | Perkins, Jacob Verfasser aut Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities Jacob Perkins Over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities Over 80 practical recipes for using Python's Natural Language Toolkit suite of libraries to maximize your natural language processing capabilities Birmingham PACKT Publishing 2010 1 Online-Ressource (iii, 256 pages) txt rdacontent c rdamedia cr rdacarrier "Open source community experience distilled.". - "Quick answers to common problems"--Cover. - Includes index Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- Table of Contents -- Preface -- Chapter 1: Tokenizing Text and Wordnet Basics -- Introduction -- Tokenizing Text Into Sentences -- Tokenizing Sentences Into Words -- Tokenizing Sentences Using Regular -- Expressions -- Filtering Stopwords in a Tokenized Sentence -- Looking Up Synsets for a Word in Wordnet -- Looking Up Lemmas and Synonyms -- in Wordnet -- Calculating Wordnet Synset Similarity -- Discovering Word Collocations -- Chapter 2: Replacing and Correcting Words -- Introduction -- Stemming Words -- Lemmatizing Words With Wordnet -- Translating Text With Babelfish -- Replacing Words Matching Regular -- Removing Repeating Characters -- Spelling Correction With Enchant -- Replacing Synonyms -- Replacing Negations With Antonyms -- Chapter 3: Creating Custom Corpora -- Introduction -- Setting Up a Custom Corpus -- Creating a Word List Corpus -- Creating a Part-of-Speech Tagged Word -- Corpus -- - Creating a Chunked Phrase Corpus -- Creating a Categorized Text Corpus -- Creating a Categorized Chunk Corpus Reader -- Lazy Corpus Loading -- Creating a Custom Corpus View -- Creating a Mongodb Backed Corpus Reader -- Corpus Editing With File Locking -- Chapter 4: Part-of-Speech Tagging -- Introduction -- Default Tagging -- Training a Unigram Part-of-Speech Tagger -- Combining Taggers With Backoff Tagging -- Training and Combining Ngram Taggers -- Creating a Model of Likely Word Tags -- Tagging With Regular Expressions -- Affix Tagging -- Training a Brill Tagger -- Training the Tnt Tagger -- Using Wordnet for Tagging -- Tagging Proper Names -- Classifier Based Tagging -- Chapter 5: Extracting Chunks -- Introduction -- Chunking and Chinking With Regular -- Merging and Splitting Chunks With Regular Expressions -- Expanding and Removing Chunks With -- Regular Expressions -- Partial Parsing With Regular Expressions -- Training a Tagger-Based Chunker -- Classification-Based Chunking -- - Extracting Named Entities -- Extracting Proper Noun Chunks -- Extracting Location Chunks -- Training a Named Entity Chunker -- Chapter 6: Transforming Chunks and Trees -- Introduction -- Filtering Insignificant Words -- Correcting Verb Forms -- Swapping Verb Phrases -- Swapping Noun Cardinals -- Swapping Infinitive Phrases -- Singularizing Plural Nouns -- Chaining Chunk Transformations -- Converting a Chunk Tree to Text -- Flattening a Deep Tree -- Creating a Shallow Tree -- Converting Tree Nodes -- Chapter 7: Text Classification -- Introduction -- Bag of Words Feature Extraction -- Training a Naive Bayes Classifier -- Training a Decision Tree Classifier -- Training a Maximum Entropy Classifier -- Measuring Precision and Recall of a -- Classifier -- Calculating High Information Words -- Combining Classifiers With Voting -- Classifying With Multiple Binary Classifiers -- Chapte The learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward. This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable COMPUTERS / Programming Languages / C♯ bisacsh COMPUTERS / Programming Languages / Java bisacsh COMPUTERS / Programming Languages / Pascal bisacsh Natural language processing (Computer science) fast Python (Computer program language) fast Python (Computer program language) local Natural language processing (Computer science) local Python (Computer program language) Natural language processing (Computer science) Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Sprachverarbeitung (DE-588)4116579-2 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 s Sprachverarbeitung (DE-588)4116579-2 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Perkins, Jacob Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities COMPUTERS / Programming Languages / C♯ bisacsh COMPUTERS / Programming Languages / Java bisacsh COMPUTERS / Programming Languages / Pascal bisacsh Natural language processing (Computer science) fast Python (Computer program language) fast Python (Computer program language) local Natural language processing (Computer science) local Python (Computer program language) Natural language processing (Computer science) Python Programmiersprache (DE-588)4434275-5 gnd Sprachverarbeitung (DE-588)4116579-2 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)4116579-2 |
title | Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities |
title_alt | Over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities Over 80 practical recipes for using Python's Natural Language Toolkit suite of libraries to maximize your natural language processing capabilities |
title_auth | Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities |
title_exact_search | Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities |
title_full | Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities Jacob Perkins |
title_fullStr | Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities Jacob Perkins |
title_full_unstemmed | Python text processing with NLTK 2.0 Cookbook over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities Jacob Perkins |
title_short | Python text processing with NLTK 2.0 Cookbook |
title_sort | python text processing with nltk 2 0 cookbook over 80 practical recipes for using python s nltk suite of libraries to maximize your natural language processing capabilities |
title_sub | over 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities |
topic | COMPUTERS / Programming Languages / C♯ bisacsh COMPUTERS / Programming Languages / Java bisacsh COMPUTERS / Programming Languages / Pascal bisacsh Natural language processing (Computer science) fast Python (Computer program language) fast Python (Computer program language) local Natural language processing (Computer science) local Python (Computer program language) Natural language processing (Computer science) Python Programmiersprache (DE-588)4434275-5 gnd Sprachverarbeitung (DE-588)4116579-2 gnd |
topic_facet | COMPUTERS / Programming Languages / C♯ COMPUTERS / Programming Languages / Java COMPUTERS / Programming Languages / Pascal Natural language processing (Computer science) Python (Computer program language) Python Programmiersprache Sprachverarbeitung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782 |
work_keys_str_mv | AT perkinsjacob pythontextprocessingwithnltk20cookbookover80practicalrecipesforusingpythonsnltksuiteoflibrariestomaximizeyournaturallanguageprocessingcapabilities AT perkinsjacob over80practicalrecipesforusingpythonsnltksuiteoflibrariestomaximizeyournaturallanguageprocessingcapabilities AT perkinsjacob over80practicalrecipesforusingpythonsnaturallanguagetoolkitsuiteoflibrariestomaximizeyournaturallanguageprocessingcapabilities |