Visualizing quaternions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Francisco, CA
Morgan Kaufmann
©2006
|
Schriftenreihe: | Morgan Kaufmann series in interactive 3D technology
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 471-486) and index Cover -- Contents -- Foreword -- Preface -- Acknowledgments -- Elements of Quaternions -- The Discovery of Quaternions -- Hamilton's Walk -- Then Came Octonions -- The Quaternion Revival -- Folklore of Rotations -- The Belt Trick -- The Rolling Ball -- The Apollo 10 Gimbal-lock Incident -- 3D Game Developer's Nightmare -- The Urban Legend of the Upside-down F16 -- Quaternions to the Rescue -- Basic Notation -- Vectors -- Length of a Vector -- 3D Dot Product -- 3D Cross Product -- Unit Vectors -- Spheres -- Matrices -- Complex Numbers -- What Are Quaternions? -- Road Map to Quaternion Visualization -- The Complex Number Connection -- The Cornerstones of Quaternion Visualization -- Fundamentals of Rotations -- 2D Rotations -- Quaternions and 3D Rotations -- Recovering theta and n -- Euler Angles and Quaternions -- Optional Remarks -- Conclusion -- Visualizing Algebraic Structure -- Algebra of Complex Numbers -- Quaternion Algebra -- Visualizing Spheres -- - 2D: Visualizing an Edge-On Circle -- The Square Root Method -- 3D: Visualizing a Balloon -- 4D: Visualizing Quaternion Geometry on S3 -- Visualizing Logarithms and Exponentials -- Complex Numbers -- Quaternions -- Visualizing Interpolation Methods -- Basics of Interpolation -- Quaternion Interpolation -- Equivalent 3 x 3 Matrix Method -- Looking at Elementary Quaternion Frames -- A Single Quaternion Frame -- Several Isolated Frames -- A Rotating Frame Sequence -- Synopsis -- Quaternions and the Belt Trick: Connecting to the Identity -- Very Interesting, but Why? -- The Details -- Frame-sequence Visualization Methods -- Quaternions and the Rolling Ball: Exploiting Order Dependence -- Order Dependence -- The Rolling Ball Controller -- Rolling Ball Quaternions -- Commutators -- Three degrees of freedom from two -- Quaternions and Gimbal Lock: Limiting the Available Space -- Guidance System Suspension -- Mathematical Interpolation Singularities -- Quaternion Viewpoint -- - Advanced Quaternion Topics -- Alternative Ways of Writing Quaternions -- Hamilton's Generalization of Complex Numbers -- Pauli Matrices -- Other Matrix Forms -- Efficiency and Complexity Issues -- Extracting a Quaternion -- Efficiency of Vector Operations -- Advanced Sphere Visualization -- Projective Method -- Distance-preserving Flattening Methods -- More on Logarithms and Exponentials -- 2D Rotations -- 3D Rotations -- Using Logarithms for Quaternion Calculus -- Quaternion Interpolations Versus Log -- Two-Dimensional Curves -- Orientation Frames for 2D Space Curves -- What Is a Map? -- Tangent and Normal Maps -- Square Root Form -- Three-Dimensional Curves -- Introduction to 3D Space Curves -- General Curve Framings in 3D -- Tubing -- Classical Frames -- Mapping the Curvature and Torsion -- Theory of Quaternion Frames -- Assigning Smooth Quaternion Frames -- Examples: Torus Knot and Helix Quaternion Frames -- Comparison of Quaternion Frame Curve Lengths -- 3D Surfaces -- - Introduction to 3D Surfaces -- Quaternion Weingarten Equations -- Quaternion Gauss Map --T. "Andrew Hanson's new book is a fresh perspective on quaternions. Features include: illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing; covers both non-mathematical and mathematical approaches to quaternions; and a companion website with an assortment of quaternion utilities and sample code, data sets for the book's illustrations, and Mathematica notebooks with essential algebraic utilities."--Jacket |
Beschreibung: | 1 Online-Ressource (xxxi, 498 pages) |
ISBN: | 0080474772 0120884003 1280968176 9780080474779 9780120884001 9781280968174 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043166077 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2006 |||| o||u| ||||||eng d | ||
020 | |a 0080474772 |c electronic bk. |9 0-08-047477-2 | ||
020 | |a 0120884003 |9 0-12-088400-3 | ||
020 | |a 1280968176 |9 1-280-96817-6 | ||
020 | |a 9780080474779 |c electronic bk. |9 978-0-08-047477-9 | ||
020 | |a 9780120884001 |9 978-0-12-088400-1 | ||
020 | |a 9781280968174 |9 978-1-280-96817-4 | ||
035 | |a (OCoLC)441776427 | ||
035 | |a (DE-599)BVBBV043166077 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.5 |2 22 | |
100 | 1 | |a Hanson, Andrew, (Andrew J.) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Visualizing quaternions |c Andrew J. Hanson |
264 | 1 | |a San Francisco, CA |b Morgan Kaufmann |c ©2006 | |
300 | |a 1 Online-Ressource (xxxi, 498 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Morgan Kaufmann series in interactive 3D technology | |
500 | |a Includes bibliographical references (pages 471-486) and index | ||
500 | |a Cover -- Contents -- Foreword -- Preface -- Acknowledgments -- Elements of Quaternions -- The Discovery of Quaternions -- Hamilton's Walk -- Then Came Octonions -- The Quaternion Revival -- Folklore of Rotations -- The Belt Trick -- The Rolling Ball -- The Apollo 10 Gimbal-lock Incident -- 3D Game Developer's Nightmare -- The Urban Legend of the Upside-down F16 -- Quaternions to the Rescue -- Basic Notation -- Vectors -- Length of a Vector -- 3D Dot Product -- 3D Cross Product -- Unit Vectors -- Spheres -- Matrices -- Complex Numbers -- What Are Quaternions? -- Road Map to Quaternion Visualization -- The Complex Number Connection -- The Cornerstones of Quaternion Visualization -- Fundamentals of Rotations -- 2D Rotations -- Quaternions and 3D Rotations -- Recovering theta and n -- Euler Angles and Quaternions -- Optional Remarks -- Conclusion -- Visualizing Algebraic Structure -- Algebra of Complex Numbers -- Quaternion Algebra -- Visualizing Spheres -- | ||
500 | |a - 2D: Visualizing an Edge-On Circle -- The Square Root Method -- 3D: Visualizing a Balloon -- 4D: Visualizing Quaternion Geometry on S3 -- Visualizing Logarithms and Exponentials -- Complex Numbers -- Quaternions -- Visualizing Interpolation Methods -- Basics of Interpolation -- Quaternion Interpolation -- Equivalent 3 x 3 Matrix Method -- Looking at Elementary Quaternion Frames -- A Single Quaternion Frame -- Several Isolated Frames -- A Rotating Frame Sequence -- Synopsis -- Quaternions and the Belt Trick: Connecting to the Identity -- Very Interesting, but Why? -- The Details -- Frame-sequence Visualization Methods -- Quaternions and the Rolling Ball: Exploiting Order Dependence -- Order Dependence -- The Rolling Ball Controller -- Rolling Ball Quaternions -- Commutators -- Three degrees of freedom from two -- Quaternions and Gimbal Lock: Limiting the Available Space -- Guidance System Suspension -- Mathematical Interpolation Singularities -- Quaternion Viewpoint -- | ||
500 | |a - Advanced Quaternion Topics -- Alternative Ways of Writing Quaternions -- Hamilton's Generalization of Complex Numbers -- Pauli Matrices -- Other Matrix Forms -- Efficiency and Complexity Issues -- Extracting a Quaternion -- Efficiency of Vector Operations -- Advanced Sphere Visualization -- Projective Method -- Distance-preserving Flattening Methods -- More on Logarithms and Exponentials -- 2D Rotations -- 3D Rotations -- Using Logarithms for Quaternion Calculus -- Quaternion Interpolations Versus Log -- Two-Dimensional Curves -- Orientation Frames for 2D Space Curves -- What Is a Map? -- Tangent and Normal Maps -- Square Root Form -- Three-Dimensional Curves -- Introduction to 3D Space Curves -- General Curve Framings in 3D -- Tubing -- Classical Frames -- Mapping the Curvature and Torsion -- Theory of Quaternion Frames -- Assigning Smooth Quaternion Frames -- Examples: Torus Knot and Helix Quaternion Frames -- Comparison of Quaternion Frame Curve Lengths -- 3D Surfaces -- | ||
500 | |a - Introduction to 3D Surfaces -- Quaternion Weingarten Equations -- Quaternion Gauss Map --T. | ||
500 | |a "Andrew Hanson's new book is a fresh perspective on quaternions. Features include: illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing; covers both non-mathematical and mathematical approaches to quaternions; and a companion website with an assortment of quaternion utilities and sample code, data sets for the book's illustrations, and Mathematica notebooks with essential algebraic utilities."--Jacket | ||
650 | 4 | |a Quaternions | |
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 7 | |a Quaternions |2 blmlsh | |
650 | 7 | |a Quaternions |2 fast | |
650 | 4 | |a Quaternions | |
650 | 0 | 7 | |a Quaternion |0 (DE-588)4176653-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Visualisierung |0 (DE-588)4188417-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quaternion |0 (DE-588)4176653-2 |D s |
689 | 0 | 1 | |a Visualisierung |0 (DE-588)4188417-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028590267 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175641272123392 |
---|---|
any_adam_object | |
author | Hanson, Andrew, (Andrew J.) |
author_facet | Hanson, Andrew, (Andrew J.) |
author_role | aut |
author_sort | Hanson, Andrew, (Andrew J.) |
author_variant | a a j h aaj aajh |
building | Verbundindex |
bvnumber | BV043166077 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)441776427 (DE-599)BVBBV043166077 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05805nmm a2200589zc 4500</leader><controlfield tag="001">BV043166077</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080474772</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-047477-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120884003</subfield><subfield code="9">0-12-088400-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280968176</subfield><subfield code="9">1-280-96817-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080474779</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-047477-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780120884001</subfield><subfield code="9">978-0-12-088400-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280968174</subfield><subfield code="9">978-1-280-96817-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)441776427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043166077</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hanson, Andrew, (Andrew J.)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Visualizing quaternions</subfield><subfield code="c">Andrew J. Hanson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Francisco, CA</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">©2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxi, 498 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Morgan Kaufmann series in interactive 3D technology</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 471-486) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Contents -- Foreword -- Preface -- Acknowledgments -- Elements of Quaternions -- The Discovery of Quaternions -- Hamilton's Walk -- Then Came Octonions -- The Quaternion Revival -- Folklore of Rotations -- The Belt Trick -- The Rolling Ball -- The Apollo 10 Gimbal-lock Incident -- 3D Game Developer's Nightmare -- The Urban Legend of the Upside-down F16 -- Quaternions to the Rescue -- Basic Notation -- Vectors -- Length of a Vector -- 3D Dot Product -- 3D Cross Product -- Unit Vectors -- Spheres -- Matrices -- Complex Numbers -- What Are Quaternions? -- Road Map to Quaternion Visualization -- The Complex Number Connection -- The Cornerstones of Quaternion Visualization -- Fundamentals of Rotations -- 2D Rotations -- Quaternions and 3D Rotations -- Recovering theta and n -- Euler Angles and Quaternions -- Optional Remarks -- Conclusion -- Visualizing Algebraic Structure -- Algebra of Complex Numbers -- Quaternion Algebra -- Visualizing Spheres -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 2D: Visualizing an Edge-On Circle -- The Square Root Method -- 3D: Visualizing a Balloon -- 4D: Visualizing Quaternion Geometry on S3 -- Visualizing Logarithms and Exponentials -- Complex Numbers -- Quaternions -- Visualizing Interpolation Methods -- Basics of Interpolation -- Quaternion Interpolation -- Equivalent 3 x 3 Matrix Method -- Looking at Elementary Quaternion Frames -- A Single Quaternion Frame -- Several Isolated Frames -- A Rotating Frame Sequence -- Synopsis -- Quaternions and the Belt Trick: Connecting to the Identity -- Very Interesting, but Why? -- The Details -- Frame-sequence Visualization Methods -- Quaternions and the Rolling Ball: Exploiting Order Dependence -- Order Dependence -- The Rolling Ball Controller -- Rolling Ball Quaternions -- Commutators -- Three degrees of freedom from two -- Quaternions and Gimbal Lock: Limiting the Available Space -- Guidance System Suspension -- Mathematical Interpolation Singularities -- Quaternion Viewpoint -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Advanced Quaternion Topics -- Alternative Ways of Writing Quaternions -- Hamilton's Generalization of Complex Numbers -- Pauli Matrices -- Other Matrix Forms -- Efficiency and Complexity Issues -- Extracting a Quaternion -- Efficiency of Vector Operations -- Advanced Sphere Visualization -- Projective Method -- Distance-preserving Flattening Methods -- More on Logarithms and Exponentials -- 2D Rotations -- 3D Rotations -- Using Logarithms for Quaternion Calculus -- Quaternion Interpolations Versus Log -- Two-Dimensional Curves -- Orientation Frames for 2D Space Curves -- What Is a Map? -- Tangent and Normal Maps -- Square Root Form -- Three-Dimensional Curves -- Introduction to 3D Space Curves -- General Curve Framings in 3D -- Tubing -- Classical Frames -- Mapping the Curvature and Torsion -- Theory of Quaternion Frames -- Assigning Smooth Quaternion Frames -- Examples: Torus Knot and Helix Quaternion Frames -- Comparison of Quaternion Frame Curve Lengths -- 3D Surfaces -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Introduction to 3D Surfaces -- Quaternion Weingarten Equations -- Quaternion Gauss Map --T.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Andrew Hanson's new book is a fresh perspective on quaternions. Features include: illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing; covers both non-mathematical and mathematical approaches to quaternions; and a companion website with an assortment of quaternion utilities and sample code, data sets for the book's illustrations, and Mathematica notebooks with essential algebraic utilities."--Jacket</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quaternions</subfield><subfield code="2">blmlsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quaternions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quaternion</subfield><subfield code="0">(DE-588)4176653-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quaternion</subfield><subfield code="0">(DE-588)4176653-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028590267</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043166077 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:31Z |
institution | BVB |
isbn | 0080474772 0120884003 1280968176 9780080474779 9780120884001 9781280968174 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028590267 |
oclc_num | 441776427 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxxi, 498 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Morgan Kaufmann |
record_format | marc |
series2 | Morgan Kaufmann series in interactive 3D technology |
spelling | Hanson, Andrew, (Andrew J.) Verfasser aut Visualizing quaternions Andrew J. Hanson San Francisco, CA Morgan Kaufmann ©2006 1 Online-Ressource (xxxi, 498 pages) txt rdacontent c rdamedia cr rdacarrier Morgan Kaufmann series in interactive 3D technology Includes bibliographical references (pages 471-486) and index Cover -- Contents -- Foreword -- Preface -- Acknowledgments -- Elements of Quaternions -- The Discovery of Quaternions -- Hamilton's Walk -- Then Came Octonions -- The Quaternion Revival -- Folklore of Rotations -- The Belt Trick -- The Rolling Ball -- The Apollo 10 Gimbal-lock Incident -- 3D Game Developer's Nightmare -- The Urban Legend of the Upside-down F16 -- Quaternions to the Rescue -- Basic Notation -- Vectors -- Length of a Vector -- 3D Dot Product -- 3D Cross Product -- Unit Vectors -- Spheres -- Matrices -- Complex Numbers -- What Are Quaternions? -- Road Map to Quaternion Visualization -- The Complex Number Connection -- The Cornerstones of Quaternion Visualization -- Fundamentals of Rotations -- 2D Rotations -- Quaternions and 3D Rotations -- Recovering theta and n -- Euler Angles and Quaternions -- Optional Remarks -- Conclusion -- Visualizing Algebraic Structure -- Algebra of Complex Numbers -- Quaternion Algebra -- Visualizing Spheres -- - 2D: Visualizing an Edge-On Circle -- The Square Root Method -- 3D: Visualizing a Balloon -- 4D: Visualizing Quaternion Geometry on S3 -- Visualizing Logarithms and Exponentials -- Complex Numbers -- Quaternions -- Visualizing Interpolation Methods -- Basics of Interpolation -- Quaternion Interpolation -- Equivalent 3 x 3 Matrix Method -- Looking at Elementary Quaternion Frames -- A Single Quaternion Frame -- Several Isolated Frames -- A Rotating Frame Sequence -- Synopsis -- Quaternions and the Belt Trick: Connecting to the Identity -- Very Interesting, but Why? -- The Details -- Frame-sequence Visualization Methods -- Quaternions and the Rolling Ball: Exploiting Order Dependence -- Order Dependence -- The Rolling Ball Controller -- Rolling Ball Quaternions -- Commutators -- Three degrees of freedom from two -- Quaternions and Gimbal Lock: Limiting the Available Space -- Guidance System Suspension -- Mathematical Interpolation Singularities -- Quaternion Viewpoint -- - Advanced Quaternion Topics -- Alternative Ways of Writing Quaternions -- Hamilton's Generalization of Complex Numbers -- Pauli Matrices -- Other Matrix Forms -- Efficiency and Complexity Issues -- Extracting a Quaternion -- Efficiency of Vector Operations -- Advanced Sphere Visualization -- Projective Method -- Distance-preserving Flattening Methods -- More on Logarithms and Exponentials -- 2D Rotations -- 3D Rotations -- Using Logarithms for Quaternion Calculus -- Quaternion Interpolations Versus Log -- Two-Dimensional Curves -- Orientation Frames for 2D Space Curves -- What Is a Map? -- Tangent and Normal Maps -- Square Root Form -- Three-Dimensional Curves -- Introduction to 3D Space Curves -- General Curve Framings in 3D -- Tubing -- Classical Frames -- Mapping the Curvature and Torsion -- Theory of Quaternion Frames -- Assigning Smooth Quaternion Frames -- Examples: Torus Knot and Helix Quaternion Frames -- Comparison of Quaternion Frame Curve Lengths -- 3D Surfaces -- - Introduction to 3D Surfaces -- Quaternion Weingarten Equations -- Quaternion Gauss Map --T. "Andrew Hanson's new book is a fresh perspective on quaternions. Features include: illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing; covers both non-mathematical and mathematical approaches to quaternions; and a companion website with an assortment of quaternion utilities and sample code, data sets for the book's illustrations, and Mathematica notebooks with essential algebraic utilities."--Jacket Quaternions MATHEMATICS / Algebra / Linear bisacsh Quaternions blmlsh Quaternions fast Quaternion (DE-588)4176653-2 gnd rswk-swf Visualisierung (DE-588)4188417-6 gnd rswk-swf Quaternion (DE-588)4176653-2 s Visualisierung (DE-588)4188417-6 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hanson, Andrew, (Andrew J.) Visualizing quaternions Quaternions MATHEMATICS / Algebra / Linear bisacsh Quaternions blmlsh Quaternions fast Quaternion (DE-588)4176653-2 gnd Visualisierung (DE-588)4188417-6 gnd |
subject_GND | (DE-588)4176653-2 (DE-588)4188417-6 |
title | Visualizing quaternions |
title_auth | Visualizing quaternions |
title_exact_search | Visualizing quaternions |
title_full | Visualizing quaternions Andrew J. Hanson |
title_fullStr | Visualizing quaternions Andrew J. Hanson |
title_full_unstemmed | Visualizing quaternions Andrew J. Hanson |
title_short | Visualizing quaternions |
title_sort | visualizing quaternions |
topic | Quaternions MATHEMATICS / Algebra / Linear bisacsh Quaternions blmlsh Quaternions fast Quaternion (DE-588)4176653-2 gnd Visualisierung (DE-588)4188417-6 gnd |
topic_facet | Quaternions MATHEMATICS / Algebra / Linear Quaternion Visualisierung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189455 |
work_keys_str_mv | AT hansonandrewandrewj visualizingquaternions |