Hypercomplex iterations: distance estimation and higher dimensional fractals
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ
World Scientific
c2002
|
Schriftenreihe: | K & E series on knots and everything
v. 17 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry Includes bibliographical references (p. 139-141) and index Pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics |
Beschreibung: | 1 Online-Ressource (xv, 144 p.) |
ISBN: | 9789812778604 9812778608 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043165533 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789812778604 |c electronic bk. |9 978-981-277-860-4 | ||
020 | |a 9812778608 |c electronic bk. |9 981-277-860-8 | ||
035 | |a (OCoLC)181344585 | ||
035 | |a (DE-599)BVBBV043165533 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.4 |2 22 | |
100 | 1 | |a Dang, Yumei |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hypercomplex iterations |b distance estimation and higher dimensional fractals |c Yumei Dang, Louis H. Kauffman, Daniel Sandin |
246 | 1 | 3 | |a Distance estimation and higher dimensional fractals |
264 | 1 | |a River Edge, NJ |b World Scientific |c c2002 | |
300 | |a 1 Online-Ressource (xv, 144 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a K & E series on knots and everything |v v. 17 | |
500 | |a Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry | ||
500 | |a Includes bibliographical references (p. 139-141) and index | ||
500 | |a Pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality | ||
500 | |a This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics | ||
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 7 | |a Fractals |2 fast | |
650 | 7 | |a Iterative methods (Mathematics) |2 fast | |
650 | 7 | |a Mandelbrot sets |2 fast | |
650 | 7 | |a Quaternions |2 fast | |
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 4 | |a Quaternions | |
650 | 4 | |a Mandelbrot sets | |
650 | 4 | |a Fractals | |
650 | 0 | 7 | |a Hyperkomplexe Funktion |0 (DE-588)4161069-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Visualisierung |0 (DE-588)4188417-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iteration |0 (DE-588)4123457-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperkomplexe Funktion |0 (DE-588)4161069-6 |D s |
689 | 0 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 0 | 2 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 1 | 1 | |a Visualisierung |0 (DE-588)4188417-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Kauffman, Louis H. |e Sonstige |4 oth | |
700 | 1 | |a Sandin, Daniel J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028589723 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175640099815424 |
---|---|
any_adam_object | |
author | Dang, Yumei |
author_facet | Dang, Yumei |
author_role | aut |
author_sort | Dang, Yumei |
author_variant | y d yd |
building | Verbundindex |
bvnumber | BV043165533 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)181344585 (DE-599)BVBBV043165533 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04673nmm a2200685zcb4500</leader><controlfield tag="001">BV043165533</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812778604</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-860-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812778608</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-860-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181344585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043165533</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dang, Yumei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypercomplex iterations</subfield><subfield code="b">distance estimation and higher dimensional fractals</subfield><subfield code="c">Yumei Dang, Louis H. Kauffman, Daniel Sandin</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Distance estimation and higher dimensional fractals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, NJ</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 144 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">K & E series on knots and everything</subfield><subfield code="v">v. 17</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 139-141) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Iterative methods (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mandelbrot sets</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quaternions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mandelbrot sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperkomplexe Funktion</subfield><subfield code="0">(DE-588)4161069-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperkomplexe Funktion</subfield><subfield code="0">(DE-588)4161069-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kauffman, Louis H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandin, Daniel J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028589723</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043165533 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:30Z |
institution | BVB |
isbn | 9789812778604 9812778608 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028589723 |
oclc_num | 181344585 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 144 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific |
record_format | marc |
series2 | K & E series on knots and everything |
spelling | Dang, Yumei Verfasser aut Hypercomplex iterations distance estimation and higher dimensional fractals Yumei Dang, Louis H. Kauffman, Daniel Sandin Distance estimation and higher dimensional fractals River Edge, NJ World Scientific c2002 1 Online-Ressource (xv, 144 p.) txt rdacontent c rdamedia cr rdacarrier K & E series on knots and everything v. 17 Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry Includes bibliographical references (p. 139-141) and index Pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics MATHEMATICS / General bisacsh Fractals fast Iterative methods (Mathematics) fast Mandelbrot sets fast Quaternions fast Iterative methods (Mathematics) Quaternions Mandelbrot sets Fractals Hyperkomplexe Funktion (DE-588)4161069-6 gnd rswk-swf Visualisierung (DE-588)4188417-6 gnd rswk-swf Iteration (DE-588)4123457-1 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Hyperkomplexe Funktion (DE-588)4161069-6 s Iteration (DE-588)4123457-1 s Fraktal (DE-588)4123220-3 s 1\p DE-604 Visualisierung (DE-588)4188417-6 s 2\p DE-604 Kauffman, Louis H. Sonstige oth Sandin, Daniel J. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dang, Yumei Hypercomplex iterations distance estimation and higher dimensional fractals MATHEMATICS / General bisacsh Fractals fast Iterative methods (Mathematics) fast Mandelbrot sets fast Quaternions fast Iterative methods (Mathematics) Quaternions Mandelbrot sets Fractals Hyperkomplexe Funktion (DE-588)4161069-6 gnd Visualisierung (DE-588)4188417-6 gnd Iteration (DE-588)4123457-1 gnd Fraktal (DE-588)4123220-3 gnd |
subject_GND | (DE-588)4161069-6 (DE-588)4188417-6 (DE-588)4123457-1 (DE-588)4123220-3 |
title | Hypercomplex iterations distance estimation and higher dimensional fractals |
title_alt | Distance estimation and higher dimensional fractals |
title_auth | Hypercomplex iterations distance estimation and higher dimensional fractals |
title_exact_search | Hypercomplex iterations distance estimation and higher dimensional fractals |
title_full | Hypercomplex iterations distance estimation and higher dimensional fractals Yumei Dang, Louis H. Kauffman, Daniel Sandin |
title_fullStr | Hypercomplex iterations distance estimation and higher dimensional fractals Yumei Dang, Louis H. Kauffman, Daniel Sandin |
title_full_unstemmed | Hypercomplex iterations distance estimation and higher dimensional fractals Yumei Dang, Louis H. Kauffman, Daniel Sandin |
title_short | Hypercomplex iterations |
title_sort | hypercomplex iterations distance estimation and higher dimensional fractals |
title_sub | distance estimation and higher dimensional fractals |
topic | MATHEMATICS / General bisacsh Fractals fast Iterative methods (Mathematics) fast Mandelbrot sets fast Quaternions fast Iterative methods (Mathematics) Quaternions Mandelbrot sets Fractals Hyperkomplexe Funktion (DE-588)4161069-6 gnd Visualisierung (DE-588)4188417-6 gnd Iteration (DE-588)4123457-1 gnd Fraktal (DE-588)4123220-3 gnd |
topic_facet | MATHEMATICS / General Fractals Iterative methods (Mathematics) Mandelbrot sets Quaternions Hyperkomplexe Funktion Visualisierung Iteration Fraktal |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210623 |
work_keys_str_mv | AT dangyumei hypercomplexiterationsdistanceestimationandhigherdimensionalfractals AT kauffmanlouish hypercomplexiterationsdistanceestimationandhigherdimensionalfractals AT sandindanielj hypercomplexiterationsdistanceestimationandhigherdimensionalfractals AT dangyumei distanceestimationandhigherdimensionalfractals AT kauffmanlouish distanceestimationandhigherdimensionalfractals AT sandindanielj distanceestimationandhigherdimensionalfractals |