Feynman motives:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2010
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 207-213) and index 1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction -- 2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups -- - 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules -- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals -- - 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure -- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4. The "cosmic Galois group" -- 7. The geometry of DimReg. 7.1. The motivic geometry of DimReg. 7.2. The noncommutative geometry of DimReg -- 8. Renormalization, singularities, and Hodge structures. 8.1. Projective radon transform. 8.2. The polar filtration and the Milnor fiber. 8.3. DimReg and mixed Hodge structures. 8.4. Regular and irregular singular connections -- - 9. Beyond scalar theories. 9.1. Supermanifolds. 9.2. Parametric Feynman integrals and supermanifolds. 9.3. Graph supermanifolds. 9.4. Noncommutative field theories This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area |
Beschreibung: | 1 Online-Ressource (xiii, 220 p.) |
ISBN: | 9789814271202 9789814271219 9814271209 9814271217 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043164777 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789814271202 |9 978-981-4271-20-2 | ||
020 | |a 9789814271219 |c electronic bk. |9 978-981-4271-21-9 | ||
020 | |a 9814271209 |9 981-4271-20-9 | ||
020 | |a 9814271217 |c electronic bk. |9 981-4271-21-7 | ||
035 | |a (OCoLC)630142472 | ||
035 | |a (DE-599)BVBBV043164777 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.35 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Marcolli, Matilde |e Verfasser |4 aut | |
245 | 1 | 0 | |a Feynman motives |c Matilde Marcolli |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2010 | |
300 | |a 1 Online-Ressource (xiii, 220 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 207-213) and index | ||
500 | |a 1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction -- 2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups -- | ||
500 | |a - 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules -- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals -- | ||
500 | |a - 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure -- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4. The "cosmic Galois group" -- 7. The geometry of DimReg. 7.1. The motivic geometry of DimReg. 7.2. The noncommutative geometry of DimReg -- 8. Renormalization, singularities, and Hodge structures. 8.1. Projective radon transform. 8.2. The polar filtration and the Milnor fiber. 8.3. DimReg and mixed Hodge structures. 8.4. Regular and irregular singular connections -- | ||
500 | |a - 9. Beyond scalar theories. 9.1. Supermanifolds. 9.2. Parametric Feynman integrals and supermanifolds. 9.3. Graph supermanifolds. 9.4. Noncommutative field theories | ||
500 | |a This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. | ||
500 | |a This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. | ||
500 | |a The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area | ||
650 | 7 | |a MATHEMATICS / Geometry / Algebraic |2 bisacsh | |
650 | 7 | |a Algebraische Varietät |2 swd | |
650 | 7 | |a Motiv (Mathematik) |2 swd | |
650 | 7 | |a Pfadintegral |2 swd | |
650 | 7 | |a Quantenfeldtheorie |2 swd | |
650 | 7 | |a Feynman integrals |2 fast | |
650 | 7 | |a Motives (Mathematics) |2 fast | |
650 | 7 | |a Quantum field theory |2 fast | |
650 | 4 | |a Motives (Mathematics) | |
650 | 4 | |a Feynman integrals | |
650 | 4 | |a Quantum field theory | |
650 | 0 | 7 | |a Algebraische Varietät |0 (DE-588)4581715-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Motiv |g Mathematik |0 (DE-588)4197596-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | 1 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 2 | |a Motiv |g Mathematik |0 (DE-588)4197596-0 |D s |
689 | 0 | 3 | |a Algebraische Varietät |0 (DE-588)4581715-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-981-4304-48-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 981-4304-48-4 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028588967 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175638694723584 |
---|---|
any_adam_object | |
author | Marcolli, Matilde |
author_facet | Marcolli, Matilde |
author_role | aut |
author_sort | Marcolli, Matilde |
author_variant | m m mm |
building | Verbundindex |
bvnumber | BV043164777 |
classification_rvk | SK 950 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)630142472 (DE-599)BVBBV043164777 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07787nmm a2200745zc 4500</leader><controlfield tag="001">BV043164777</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814271202</subfield><subfield code="9">978-981-4271-20-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814271219</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4271-21-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814271209</subfield><subfield code="9">981-4271-20-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814271217</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4271-21-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)630142472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043164777</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marcolli, Matilde</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman motives</subfield><subfield code="c">Matilde Marcolli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 220 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 207-213) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction -- 2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules -- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure -- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4. The "cosmic Galois group" -- 7. The geometry of DimReg. 7.1. The motivic geometry of DimReg. 7.2. The noncommutative geometry of DimReg -- 8. Renormalization, singularities, and Hodge structures. 8.1. Projective radon transform. 8.2. The polar filtration and the Milnor fiber. 8.3. DimReg and mixed Hodge structures. 8.4. Regular and irregular singular connections -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 9. Beyond scalar theories. 9.1. Supermanifolds. 9.2. Parametric Feynman integrals and supermanifolds. 9.3. Graph supermanifolds. 9.4. Noncommutative field theories</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Varietät</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Motiv (Mathematik)</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feynman integrals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Motives (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motives (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Motiv</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4197596-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Motiv</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4197596-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-981-4304-48-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">981-4304-48-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028588967</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043164777 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:28Z |
institution | BVB |
isbn | 9789814271202 9789814271219 9814271209 9814271217 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028588967 |
oclc_num | 630142472 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 220 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Marcolli, Matilde Verfasser aut Feynman motives Matilde Marcolli Singapore World Scientific Pub. Co. c2010 1 Online-Ressource (xiii, 220 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 207-213) and index 1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction -- 2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups -- - 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules -- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals -- - 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure -- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4. The "cosmic Galois group" -- 7. The geometry of DimReg. 7.1. The motivic geometry of DimReg. 7.2. The noncommutative geometry of DimReg -- 8. Renormalization, singularities, and Hodge structures. 8.1. Projective radon transform. 8.2. The polar filtration and the Milnor fiber. 8.3. DimReg and mixed Hodge structures. 8.4. Regular and irregular singular connections -- - 9. Beyond scalar theories. 9.1. Supermanifolds. 9.2. Parametric Feynman integrals and supermanifolds. 9.3. Graph supermanifolds. 9.4. Noncommutative field theories This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area MATHEMATICS / Geometry / Algebraic bisacsh Algebraische Varietät swd Motiv (Mathematik) swd Pfadintegral swd Quantenfeldtheorie swd Feynman integrals fast Motives (Mathematics) fast Quantum field theory fast Motives (Mathematics) Feynman integrals Quantum field theory Algebraische Varietät (DE-588)4581715-7 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Motiv Mathematik (DE-588)4197596-0 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Pfadintegral (DE-588)4173973-5 s Quantenfeldtheorie (DE-588)4047984-5 s Motiv Mathematik (DE-588)4197596-0 s Algebraische Varietät (DE-588)4581715-7 s 1\p DE-604 World Scientific (Firm) Sonstige oth Erscheint auch als Druck-Ausgabe, Paperback 978-981-4304-48-1 Erscheint auch als Druck-Ausgabe, Paperback 981-4304-48-4 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Marcolli, Matilde Feynman motives MATHEMATICS / Geometry / Algebraic bisacsh Algebraische Varietät swd Motiv (Mathematik) swd Pfadintegral swd Quantenfeldtheorie swd Feynman integrals fast Motives (Mathematics) fast Quantum field theory fast Motives (Mathematics) Feynman integrals Quantum field theory Algebraische Varietät (DE-588)4581715-7 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Motiv Mathematik (DE-588)4197596-0 gnd Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4581715-7 (DE-588)4047984-5 (DE-588)4197596-0 (DE-588)4173973-5 |
title | Feynman motives |
title_auth | Feynman motives |
title_exact_search | Feynman motives |
title_full | Feynman motives Matilde Marcolli |
title_fullStr | Feynman motives Matilde Marcolli |
title_full_unstemmed | Feynman motives Matilde Marcolli |
title_short | Feynman motives |
title_sort | feynman motives |
topic | MATHEMATICS / Geometry / Algebraic bisacsh Algebraische Varietät swd Motiv (Mathematik) swd Pfadintegral swd Quantenfeldtheorie swd Feynman integrals fast Motives (Mathematics) fast Quantum field theory fast Motives (Mathematics) Feynman integrals Quantum field theory Algebraische Varietät (DE-588)4581715-7 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Motiv Mathematik (DE-588)4197596-0 gnd Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | MATHEMATICS / Geometry / Algebraic Algebraische Varietät Motiv (Mathematik) Pfadintegral Quantenfeldtheorie Feynman integrals Motives (Mathematics) Quantum field theory Motiv Mathematik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340678 |
work_keys_str_mv | AT marcollimatilde feynmanmotives AT worldscientificfirm feynmanmotives |