High-dimensional nonlinear diffusion stochastic processes: modelling for engineering applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2001
|
Schriftenreihe: | Series on advances in mathematics for applied sciences
v. 56 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (and index Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations.The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided |
Beschreibung: | 1 Online-Ressource (xviii, 297 p.) |
ISBN: | 9789810243852 9789812810540 9810243855 9812810544 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043164229 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789810243852 |9 978-981-02-4385-2 | ||
020 | |a 9789812810540 |c electronic bk. |9 978-981-281-054-0 | ||
020 | |a 9810243855 |c alk. paper |9 981-02-4385-5 | ||
020 | |a 9812810544 |c electronic bk. |9 981-281-054-4 | ||
035 | |a (OCoLC)268966013 | ||
035 | |a (DE-599)BVBBV043164229 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 620/.001/5118 |2 22 | |
100 | 1 | |a Mamontov, Yevgeny |e Verfasser |4 aut | |
245 | 1 | 0 | |a High-dimensional nonlinear diffusion stochastic processes |b modelling for engineering applications |c Yevgeny Mamontov, Magnus Willander |
264 | 1 | |a Singapore |b World Scientific |c 2001 | |
300 | |a 1 Online-Ressource (xviii, 297 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on advances in mathematics for applied sciences |v v. 56 | |
500 | |a Includes bibliographical references (and index | ||
500 | |a Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations.The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided | ||
650 | 4 | |a Ingénierie / Modèles mathématiques | |
650 | 4 | |a Processus stochastiques | |
650 | 4 | |a Processus de diffusion | |
650 | 4 | |a Équations différentielles non linéaires | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Reference |2 bisacsh | |
650 | 7 | |a Differential equations, Nonlinear |2 fast | |
650 | 7 | |a Diffusion processes |2 fast | |
650 | 7 | |a Engineering / Mathematical models |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Engineering |x Mathematical models | |
650 | 4 | |a Stochastic processes | |
650 | 4 | |a Diffusion processes | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 1 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Willander, M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028588420 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175637609447424 |
---|---|
any_adam_object | |
author | Mamontov, Yevgeny |
author_facet | Mamontov, Yevgeny |
author_role | aut |
author_sort | Mamontov, Yevgeny |
author_variant | y m ym |
building | Verbundindex |
bvnumber | BV043164229 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)268966013 (DE-599)BVBBV043164229 |
dewey-full | 620/.001/5118 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620/.001/5118 |
dewey-search | 620/.001/5118 |
dewey-sort | 3620 11 45118 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03633nmm a2200661zcb4500</leader><controlfield tag="001">BV043164229</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810243852</subfield><subfield code="9">978-981-02-4385-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810540</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-054-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810243855</subfield><subfield code="c">alk. paper</subfield><subfield code="9">981-02-4385-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812810544</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-054-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)268966013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043164229</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620/.001/5118</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mamontov, Yevgeny</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-dimensional nonlinear diffusion stochastic processes</subfield><subfield code="b">modelling for engineering applications</subfield><subfield code="c">Yevgeny Mamontov, Magnus Willander</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 297 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences</subfield><subfield code="v">v. 56</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations.The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingénierie / Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus de diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles non linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diffusion processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Engineering / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Willander, M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028588420</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043164229 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:27Z |
institution | BVB |
isbn | 9789810243852 9789812810540 9810243855 9812810544 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028588420 |
oclc_num | 268966013 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xviii, 297 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific |
record_format | marc |
series2 | Series on advances in mathematics for applied sciences |
spelling | Mamontov, Yevgeny Verfasser aut High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications Yevgeny Mamontov, Magnus Willander Singapore World Scientific 2001 1 Online-Ressource (xviii, 297 p.) txt rdacontent c rdamedia cr rdacarrier Series on advances in mathematics for applied sciences v. 56 Includes bibliographical references (and index Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations.The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided Ingénierie / Modèles mathématiques Processus stochastiques Processus de diffusion Équations différentielles non linéaires TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Differential equations, Nonlinear fast Diffusion processes fast Engineering / Mathematical models fast Stochastic processes fast Ingenieurwissenschaften Mathematisches Modell Engineering Mathematical models Stochastic processes Diffusion processes Differential equations, Nonlinear Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 s Nichtlineare Diffusionsgleichung (DE-588)4171749-1 s 1\p DE-604 Willander, M. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mamontov, Yevgeny High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications Ingénierie / Modèles mathématiques Processus stochastiques Processus de diffusion Équations différentielles non linéaires TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Differential equations, Nonlinear fast Diffusion processes fast Engineering / Mathematical models fast Stochastic processes fast Ingenieurwissenschaften Mathematisches Modell Engineering Mathematical models Stochastic processes Diffusion processes Differential equations, Nonlinear Stochastischer Prozess (DE-588)4057630-9 gnd Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4171749-1 |
title | High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications |
title_auth | High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications |
title_exact_search | High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications |
title_full | High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications Yevgeny Mamontov, Magnus Willander |
title_fullStr | High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications Yevgeny Mamontov, Magnus Willander |
title_full_unstemmed | High-dimensional nonlinear diffusion stochastic processes modelling for engineering applications Yevgeny Mamontov, Magnus Willander |
title_short | High-dimensional nonlinear diffusion stochastic processes |
title_sort | high dimensional nonlinear diffusion stochastic processes modelling for engineering applications |
title_sub | modelling for engineering applications |
topic | Ingénierie / Modèles mathématiques Processus stochastiques Processus de diffusion Équations différentielles non linéaires TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Differential equations, Nonlinear fast Diffusion processes fast Engineering / Mathematical models fast Stochastic processes fast Ingenieurwissenschaften Mathematisches Modell Engineering Mathematical models Stochastic processes Diffusion processes Differential equations, Nonlinear Stochastischer Prozess (DE-588)4057630-9 gnd Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd |
topic_facet | Ingénierie / Modèles mathématiques Processus stochastiques Processus de diffusion Équations différentielles non linéaires TECHNOLOGY & ENGINEERING / Engineering (General) TECHNOLOGY & ENGINEERING / Reference Differential equations, Nonlinear Diffusion processes Engineering / Mathematical models Stochastic processes Ingenieurwissenschaften Mathematisches Modell Engineering Mathematical models Stochastischer Prozess Nichtlineare Diffusionsgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902 |
work_keys_str_mv | AT mamontovyevgeny highdimensionalnonlineardiffusionstochasticprocessesmodellingforengineeringapplications AT willanderm highdimensionalnonlineardiffusionstochasticprocessesmodellingforengineeringapplications |