Classifying spaces of degenerating polarized Hodge structures:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kato, K., (Kazuya) (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, N.J. Princeton University Press 2009
Schriftenreihe:Annals of mathematics studies no. 169
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002
Includes bibliographical references (pages 315-319) and index
In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory
0.1 - Hodge Theory - 7 -- - 0.2 - Logarithmic Hodge Theory - 11 -- - 0.3 - Griffiths Domains and Moduli of PH - 24 -- - 0.4 - Toroidal Partial Compactifications of [Gamma]/D and Moduli of PLH - 30 -- - 0.5 - Fundamental Diagram and Other Enlargements of D - 43 -- - 0.7 - Notation and Convention - 67 -- - Chapter 1 - Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits - 70 -- - 1.1 - Hodge Structures and Polarized Hodge Structures - 70 -- - 1.2 - Classifying Spaces of Hodge Structures - 71 -- - 1.3 - Extended Classifying Spaces - 72 -- - Chapter 2 - Logarithmic Hodge Structures - 75 -- - 2.1 - Logarithmic Structures - 75 -- - 2.2 - Ringed Spaces (X[superscript log], O[subscript X superscript log]) - 81 -- - 2.3 - Local Systems on X[superscript log] - 88 -- - 2.4 - Polarized Logarithmic Hodge Structures - 94 -- - 2.5 - Nilpotent Orbits and Period Maps - 97 -- - 2.6 - Logarithmic Mixed Hodge Structures - 105 -- - Chapter 3 - Strong Topology and Logarithmic Manifolds - 107 --
- 3.1 - Strong Topology - 107 -- - 3.2 - Generalizations of Analytic Spaces - 115 -- - 3.3 - Sets E[subscript sigma] and E[subscript sigma superscript sharp] - 120 -- - 3.4 - Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], E[subscript sigma superscript sharp], and D[subscript Sigma superscript sharp] - 125 -- - 3.5 - Infinitesimal Calculus and Logarithmic Manifolds - 127 -- - 3.6 - Logarithmic Modifications - 133 -- - Chapter 4 - Main Results - 146 -- - 4.1 - Theorem A: The Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], and [Gamma]/D[subscript Sigma sharp] - 146 -- - 4.2 - Theorem B: The Functor PLH[subscript phi] - 147 -- - 4.3 - Extensions of Period Maps - 148 -- - 4.4 - Infinitesimal Period Maps - 153 -- - Chapter 5 - Fundamental Diagram - 157 -- - 5.1 - Borel-Serre Spaces (Review) - 158 -- - 5.2 - Spaces of SL(2)-Orbits (Review) - 165 -- - 5.3 - Spaces of Valuative Nilpotent Orbits - 170 -- - 5.4 - Valuative Nilpotent i-Orbits and SL(2)-Orbits - 173 -- - Chapter 6
- The Map [psi] : D[subscript val superscript sharp] to D[subscript SL] (2) - 175 -- - 6.1 - Review of [CKS] and Some Related Results - 175 -- - 6.2 - Proof of Theorem 5.4.2 - 186 -- - 6.3 - Proof of Theorem 5.4.3 (i) - 190 -- - 6.4 - Proofs of Theorem 5.4.3 (ii) and Theorem 5.4.4 - 195 -- - Chapter 7 - Proof of Theorem A - 205 -- - 7.1 - Proof of Theorem A (i) - 205 -- - 7.2 - Action of [sigma subscript C] on E[subscript sigma] - 209 -- - 7.3 - Proof of Theorem A for [Gamma]([sigma])[superscript gp]/D[subscript sigma] - 215 -- - 7.4 - Proof of Theorem A for [Gamma]/D[subscript Sigma] - 220 -- - Chapter 8 - Proof of Theorem B - 226 -- - 8.1 - Logarithmic Local Systems - 226 -- - 8.2 - Proof of Theorem B - 229 -- - 8.3 - Relationship among Categories of Generalized Analytic Spaces - 235 -- - 8.4 - Proof of Theorem 0.5.29 - 241 -- - Chapter 9 - [flat]-Spaces - 244 -- - 9.1 - Definitions and Main Properties - 244 -- - 9.2
- Proofs of Theorem 9.1.4 for [Gamma]/X[subscript BS superscript flat], [Gamma]/D[superscript flat subscript BS], and [Gamma]/D[subscript BS, val superscript flat] - 246 -- - 9.3 - Proof of Theorem 9.1.4 for [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 248 -- - 9.4 - Extended Period Maps - 249 -- - Chapter 10 - Local Structures of D[subscript SL(2)] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 251 -- - 10.1 - Local Structures of D[subscript SL(2)] - 251 -- - 10.2 - A Special Open Neighborhood U(p) - 255 -- - 10.3 - Proof of Theorem 10.1.3 - 263 -- - 10.4 - Local Structures of D[subscript SL(2), less than or equal 1] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 269 -- - Chapter 11 - Moduli of PLH with Coefficients - 271 -- - 11.1 - Space [Gamma]/D[subscript Sigma superscript A] - 271 -- - 11.2 - PLH with Coefficients - 274 -- - 11.3 - Moduli - 275 -- - Chapter 12 - Examples and Problems - 277 -- - 12.1
- Siegel Upper Half Spaces - 277 -- - 12.2 - Case G[subscript R] [bsime] O(1, n -- 1, R) - 281 -- - 12.3 - Example of Weight 3 (A) - 290 -- - 12.4 - Example of Weight 3 (B) - 295 -- - 12.5 - Relationship with [U2] - 299 -- - 12.6 - Complete Fans - 301 -- - 12.7 - Problems - 304 -- - A1 - Positive Direction of Local Monodromy - 307 -- - A2 - Proper Base Change Theorem for Topological Spaces - 310
Beschreibung:1 Online-Ressource (ix, 336 pages)
ISBN:0691138222
9780691138220

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen