Classifying spaces of degenerating polarized Hodge structures:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
2009
|
Schriftenreihe: | Annals of mathematics studies
no. 169 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 315-319) and index In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory 0.1 - Hodge Theory - 7 -- - 0.2 - Logarithmic Hodge Theory - 11 -- - 0.3 - Griffiths Domains and Moduli of PH - 24 -- - 0.4 - Toroidal Partial Compactifications of [Gamma]/D and Moduli of PLH - 30 -- - 0.5 - Fundamental Diagram and Other Enlargements of D - 43 -- - 0.7 - Notation and Convention - 67 -- - Chapter 1 - Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits - 70 -- - 1.1 - Hodge Structures and Polarized Hodge Structures - 70 -- - 1.2 - Classifying Spaces of Hodge Structures - 71 -- - 1.3 - Extended Classifying Spaces - 72 -- - Chapter 2 - Logarithmic Hodge Structures - 75 -- - 2.1 - Logarithmic Structures - 75 -- - 2.2 - Ringed Spaces (X[superscript log], O[subscript X superscript log]) - 81 -- - 2.3 - Local Systems on X[superscript log] - 88 -- - 2.4 - Polarized Logarithmic Hodge Structures - 94 -- - 2.5 - Nilpotent Orbits and Period Maps - 97 -- - 2.6 - Logarithmic Mixed Hodge Structures - 105 -- - Chapter 3 - Strong Topology and Logarithmic Manifolds - 107 -- - 3.1 - Strong Topology - 107 -- - 3.2 - Generalizations of Analytic Spaces - 115 -- - 3.3 - Sets E[subscript sigma] and E[subscript sigma superscript sharp] - 120 -- - 3.4 - Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], E[subscript sigma superscript sharp], and D[subscript Sigma superscript sharp] - 125 -- - 3.5 - Infinitesimal Calculus and Logarithmic Manifolds - 127 -- - 3.6 - Logarithmic Modifications - 133 -- - Chapter 4 - Main Results - 146 -- - 4.1 - Theorem A: The Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], and [Gamma]/D[subscript Sigma sharp] - 146 -- - 4.2 - Theorem B: The Functor PLH[subscript phi] - 147 -- - 4.3 - Extensions of Period Maps - 148 -- - 4.4 - Infinitesimal Period Maps - 153 -- - Chapter 5 - Fundamental Diagram - 157 -- - 5.1 - Borel-Serre Spaces (Review) - 158 -- - 5.2 - Spaces of SL(2)-Orbits (Review) - 165 -- - 5.3 - Spaces of Valuative Nilpotent Orbits - 170 -- - 5.4 - Valuative Nilpotent i-Orbits and SL(2)-Orbits - 173 -- - Chapter 6 - The Map [psi] : D[subscript val superscript sharp] to D[subscript SL] (2) - 175 -- - 6.1 - Review of [CKS] and Some Related Results - 175 -- - 6.2 - Proof of Theorem 5.4.2 - 186 -- - 6.3 - Proof of Theorem 5.4.3 (i) - 190 -- - 6.4 - Proofs of Theorem 5.4.3 (ii) and Theorem 5.4.4 - 195 -- - Chapter 7 - Proof of Theorem A - 205 -- - 7.1 - Proof of Theorem A (i) - 205 -- - 7.2 - Action of [sigma subscript C] on E[subscript sigma] - 209 -- - 7.3 - Proof of Theorem A for [Gamma]([sigma])[superscript gp]/D[subscript sigma] - 215 -- - 7.4 - Proof of Theorem A for [Gamma]/D[subscript Sigma] - 220 -- - Chapter 8 - Proof of Theorem B - 226 -- - 8.1 - Logarithmic Local Systems - 226 -- - 8.2 - Proof of Theorem B - 229 -- - 8.3 - Relationship among Categories of Generalized Analytic Spaces - 235 -- - 8.4 - Proof of Theorem 0.5.29 - 241 -- - Chapter 9 - [flat]-Spaces - 244 -- - 9.1 - Definitions and Main Properties - 244 -- - 9.2 - Proofs of Theorem 9.1.4 for [Gamma]/X[subscript BS superscript flat], [Gamma]/D[superscript flat subscript BS], and [Gamma]/D[subscript BS, val superscript flat] - 246 -- - 9.3 - Proof of Theorem 9.1.4 for [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 248 -- - 9.4 - Extended Period Maps - 249 -- - Chapter 10 - Local Structures of D[subscript SL(2)] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 251 -- - 10.1 - Local Structures of D[subscript SL(2)] - 251 -- - 10.2 - A Special Open Neighborhood U(p) - 255 -- - 10.3 - Proof of Theorem 10.1.3 - 263 -- - 10.4 - Local Structures of D[subscript SL(2), less than or equal 1] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 269 -- - Chapter 11 - Moduli of PLH with Coefficients - 271 -- - 11.1 - Space [Gamma]/D[subscript Sigma superscript A] - 271 -- - 11.2 - PLH with Coefficients - 274 -- - 11.3 - Moduli - 275 -- - Chapter 12 - Examples and Problems - 277 -- - 12.1 - Siegel Upper Half Spaces - 277 -- - 12.2 - Case G[subscript R] [bsime] O(1, n -- 1, R) - 281 -- - 12.3 - Example of Weight 3 (A) - 290 -- - 12.4 - Example of Weight 3 (B) - 295 -- - 12.5 - Relationship with [U2] - 299 -- - 12.6 - Complete Fans - 301 -- - 12.7 - Problems - 304 -- - A1 - Positive Direction of Local Monodromy - 307 -- - A2 - Proper Base Change Theorem for Topological Spaces - 310 |
Beschreibung: | 1 Online-Ressource (ix, 336 pages) |
ISBN: | 0691138222 9780691138220 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043163551 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2009 |||| o||u| ||||||eng d | ||
020 | |a 0691138222 |c electronic bk. |9 0-691-13822-2 | ||
020 | |a 9780691138220 |c electronic bk. |9 978-0-691-13822-0 | ||
035 | |a (OCoLC)761158505 | ||
035 | |a (DE-599)BVBBV043163551 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514/.74 |2 22 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Kato, K., (Kazuya) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Classifying spaces of degenerating polarized Hodge structures |c Kazuya Kato and Sampei Usui |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c 2009 | |
300 | |a 1 Online-Ressource (ix, 336 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 169 | |
500 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 | ||
500 | |a Includes bibliographical references (pages 315-319) and index | ||
500 | |a In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory | ||
500 | |a 0.1 - Hodge Theory - 7 -- - 0.2 - Logarithmic Hodge Theory - 11 -- - 0.3 - Griffiths Domains and Moduli of PH - 24 -- - 0.4 - Toroidal Partial Compactifications of [Gamma]/D and Moduli of PLH - 30 -- - 0.5 - Fundamental Diagram and Other Enlargements of D - 43 -- - 0.7 - Notation and Convention - 67 -- - Chapter 1 - Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits - 70 -- - 1.1 - Hodge Structures and Polarized Hodge Structures - 70 -- - 1.2 - Classifying Spaces of Hodge Structures - 71 -- - 1.3 - Extended Classifying Spaces - 72 -- - Chapter 2 - Logarithmic Hodge Structures - 75 -- - 2.1 - Logarithmic Structures - 75 -- - 2.2 - Ringed Spaces (X[superscript log], O[subscript X superscript log]) - 81 -- - 2.3 - Local Systems on X[superscript log] - 88 -- - 2.4 - Polarized Logarithmic Hodge Structures - 94 -- - 2.5 - Nilpotent Orbits and Period Maps - 97 -- - 2.6 - Logarithmic Mixed Hodge Structures - 105 -- - Chapter 3 - Strong Topology and Logarithmic Manifolds - 107 -- | ||
500 | |a - 3.1 - Strong Topology - 107 -- - 3.2 - Generalizations of Analytic Spaces - 115 -- - 3.3 - Sets E[subscript sigma] and E[subscript sigma superscript sharp] - 120 -- - 3.4 - Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], E[subscript sigma superscript sharp], and D[subscript Sigma superscript sharp] - 125 -- - 3.5 - Infinitesimal Calculus and Logarithmic Manifolds - 127 -- - 3.6 - Logarithmic Modifications - 133 -- - Chapter 4 - Main Results - 146 -- - 4.1 - Theorem A: The Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], and [Gamma]/D[subscript Sigma sharp] - 146 -- - 4.2 - Theorem B: The Functor PLH[subscript phi] - 147 -- - 4.3 - Extensions of Period Maps - 148 -- - 4.4 - Infinitesimal Period Maps - 153 -- - Chapter 5 - Fundamental Diagram - 157 -- - 5.1 - Borel-Serre Spaces (Review) - 158 -- - 5.2 - Spaces of SL(2)-Orbits (Review) - 165 -- - 5.3 - Spaces of Valuative Nilpotent Orbits - 170 -- - 5.4 - Valuative Nilpotent i-Orbits and SL(2)-Orbits - 173 -- - Chapter 6 | ||
500 | |a - The Map [psi] : D[subscript val superscript sharp] to D[subscript SL] (2) - 175 -- - 6.1 - Review of [CKS] and Some Related Results - 175 -- - 6.2 - Proof of Theorem 5.4.2 - 186 -- - 6.3 - Proof of Theorem 5.4.3 (i) - 190 -- - 6.4 - Proofs of Theorem 5.4.3 (ii) and Theorem 5.4.4 - 195 -- - Chapter 7 - Proof of Theorem A - 205 -- - 7.1 - Proof of Theorem A (i) - 205 -- - 7.2 - Action of [sigma subscript C] on E[subscript sigma] - 209 -- - 7.3 - Proof of Theorem A for [Gamma]([sigma])[superscript gp]/D[subscript sigma] - 215 -- - 7.4 - Proof of Theorem A for [Gamma]/D[subscript Sigma] - 220 -- - Chapter 8 - Proof of Theorem B - 226 -- - 8.1 - Logarithmic Local Systems - 226 -- - 8.2 - Proof of Theorem B - 229 -- - 8.3 - Relationship among Categories of Generalized Analytic Spaces - 235 -- - 8.4 - Proof of Theorem 0.5.29 - 241 -- - Chapter 9 - [flat]-Spaces - 244 -- - 9.1 - Definitions and Main Properties - 244 -- - 9.2 | ||
500 | |a - Proofs of Theorem 9.1.4 for [Gamma]/X[subscript BS superscript flat], [Gamma]/D[superscript flat subscript BS], and [Gamma]/D[subscript BS, val superscript flat] - 246 -- - 9.3 - Proof of Theorem 9.1.4 for [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 248 -- - 9.4 - Extended Period Maps - 249 -- - Chapter 10 - Local Structures of D[subscript SL(2)] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 251 -- - 10.1 - Local Structures of D[subscript SL(2)] - 251 -- - 10.2 - A Special Open Neighborhood U(p) - 255 -- - 10.3 - Proof of Theorem 10.1.3 - 263 -- - 10.4 - Local Structures of D[subscript SL(2), less than or equal 1] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 269 -- - Chapter 11 - Moduli of PLH with Coefficients - 271 -- - 11.1 - Space [Gamma]/D[subscript Sigma superscript A] - 271 -- - 11.2 - PLH with Coefficients - 274 -- - 11.3 - Moduli - 275 -- - Chapter 12 - Examples and Problems - 277 -- - 12.1 | ||
500 | |a - Siegel Upper Half Spaces - 277 -- - 12.2 - Case G[subscript R] [bsime] O(1, n -- 1, R) - 281 -- - 12.3 - Example of Weight 3 (A) - 290 -- - 12.4 - Example of Weight 3 (B) - 295 -- - 12.5 - Relationship with [U2] - 299 -- - 12.6 - Complete Fans - 301 -- - 12.7 - Problems - 304 -- - A1 - Positive Direction of Local Monodromy - 307 -- - A2 - Proper Base Change Theorem for Topological Spaces - 310 | ||
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Hodge theory |2 fast | |
650 | 7 | |a Logarithms |2 fast | |
650 | 7 | |a Hodge-Struktur |2 swd | |
650 | 7 | |a Hodge-Theorie |2 swd | |
650 | 7 | |a Logarithmus |2 swd | |
650 | 4 | |a Hodge theory | |
650 | 4 | |a Logarithms | |
650 | 0 | 7 | |a Hodge-Struktur |0 (DE-588)4406134-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logarithmus |0 (DE-588)4168047-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hodge-Theorie |0 (DE-588)4135967-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hodge-Theorie |0 (DE-588)4135967-7 |D s |
689 | 0 | 1 | |a Logarithmus |0 (DE-588)4168047-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hodge-Struktur |0 (DE-588)4406134-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Usui, Sampei |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-691-13821-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-691-13821-3 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028587742 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175636295581696 |
---|---|
any_adam_object | |
author | Kato, K., (Kazuya) |
author_facet | Kato, K., (Kazuya) |
author_role | aut |
author_sort | Kato, K., (Kazuya) |
author_variant | k k k kk kkk |
building | Verbundindex |
bvnumber | BV043163551 |
classification_rvk | SK 240 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)761158505 (DE-599)BVBBV043163551 |
dewey-full | 514/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.74 |
dewey-search | 514/.74 |
dewey-sort | 3514 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07446nmm a2200697zcb4500</leader><controlfield tag="001">BV043163551</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691138222</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-691-13822-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691138220</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-691-13822-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)761158505</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043163551</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kato, K., (Kazuya)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classifying spaces of degenerating polarized Hodge structures</subfield><subfield code="c">Kazuya Kato and Sampei Usui</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 336 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 169</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 315-319) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">0.1 - Hodge Theory - 7 -- - 0.2 - Logarithmic Hodge Theory - 11 -- - 0.3 - Griffiths Domains and Moduli of PH - 24 -- - 0.4 - Toroidal Partial Compactifications of [Gamma]/D and Moduli of PLH - 30 -- - 0.5 - Fundamental Diagram and Other Enlargements of D - 43 -- - 0.7 - Notation and Convention - 67 -- - Chapter 1 - Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits - 70 -- - 1.1 - Hodge Structures and Polarized Hodge Structures - 70 -- - 1.2 - Classifying Spaces of Hodge Structures - 71 -- - 1.3 - Extended Classifying Spaces - 72 -- - Chapter 2 - Logarithmic Hodge Structures - 75 -- - 2.1 - Logarithmic Structures - 75 -- - 2.2 - Ringed Spaces (X[superscript log], O[subscript X superscript log]) - 81 -- - 2.3 - Local Systems on X[superscript log] - 88 -- - 2.4 - Polarized Logarithmic Hodge Structures - 94 -- - 2.5 - Nilpotent Orbits and Period Maps - 97 -- - 2.6 - Logarithmic Mixed Hodge Structures - 105 -- - Chapter 3 - Strong Topology and Logarithmic Manifolds - 107 --</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3.1 - Strong Topology - 107 -- - 3.2 - Generalizations of Analytic Spaces - 115 -- - 3.3 - Sets E[subscript sigma] and E[subscript sigma superscript sharp] - 120 -- - 3.4 - Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], E[subscript sigma superscript sharp], and D[subscript Sigma superscript sharp] - 125 -- - 3.5 - Infinitesimal Calculus and Logarithmic Manifolds - 127 -- - 3.6 - Logarithmic Modifications - 133 -- - Chapter 4 - Main Results - 146 -- - 4.1 - Theorem A: The Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], and [Gamma]/D[subscript Sigma sharp] - 146 -- - 4.2 - Theorem B: The Functor PLH[subscript phi] - 147 -- - 4.3 - Extensions of Period Maps - 148 -- - 4.4 - Infinitesimal Period Maps - 153 -- - Chapter 5 - Fundamental Diagram - 157 -- - 5.1 - Borel-Serre Spaces (Review) - 158 -- - 5.2 - Spaces of SL(2)-Orbits (Review) - 165 -- - 5.3 - Spaces of Valuative Nilpotent Orbits - 170 -- - 5.4 - Valuative Nilpotent i-Orbits and SL(2)-Orbits - 173 -- - Chapter 6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - The Map [psi] : D[subscript val superscript sharp] to D[subscript SL] (2) - 175 -- - 6.1 - Review of [CKS] and Some Related Results - 175 -- - 6.2 - Proof of Theorem 5.4.2 - 186 -- - 6.3 - Proof of Theorem 5.4.3 (i) - 190 -- - 6.4 - Proofs of Theorem 5.4.3 (ii) and Theorem 5.4.4 - 195 -- - Chapter 7 - Proof of Theorem A - 205 -- - 7.1 - Proof of Theorem A (i) - 205 -- - 7.2 - Action of [sigma subscript C] on E[subscript sigma] - 209 -- - 7.3 - Proof of Theorem A for [Gamma]([sigma])[superscript gp]/D[subscript sigma] - 215 -- - 7.4 - Proof of Theorem A for [Gamma]/D[subscript Sigma] - 220 -- - Chapter 8 - Proof of Theorem B - 226 -- - 8.1 - Logarithmic Local Systems - 226 -- - 8.2 - Proof of Theorem B - 229 -- - 8.3 - Relationship among Categories of Generalized Analytic Spaces - 235 -- - 8.4 - Proof of Theorem 0.5.29 - 241 -- - Chapter 9 - [flat]-Spaces - 244 -- - 9.1 - Definitions and Main Properties - 244 -- - 9.2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Proofs of Theorem 9.1.4 for [Gamma]/X[subscript BS superscript flat], [Gamma]/D[superscript flat subscript BS], and [Gamma]/D[subscript BS, val superscript flat] - 246 -- - 9.3 - Proof of Theorem 9.1.4 for [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 248 -- - 9.4 - Extended Period Maps - 249 -- - Chapter 10 - Local Structures of D[subscript SL(2)] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 251 -- - 10.1 - Local Structures of D[subscript SL(2)] - 251 -- - 10.2 - A Special Open Neighborhood U(p) - 255 -- - 10.3 - Proof of Theorem 10.1.3 - 263 -- - 10.4 - Local Structures of D[subscript SL(2), less than or equal 1] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 269 -- - Chapter 11 - Moduli of PLH with Coefficients - 271 -- - 11.1 - Space [Gamma]/D[subscript Sigma superscript A] - 271 -- - 11.2 - PLH with Coefficients - 274 -- - 11.3 - Moduli - 275 -- - Chapter 12 - Examples and Problems - 277 -- - 12.1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Siegel Upper Half Spaces - 277 -- - 12.2 - Case G[subscript R] [bsime] O(1, n -- 1, R) - 281 -- - 12.3 - Example of Weight 3 (A) - 290 -- - 12.4 - Example of Weight 3 (B) - 295 -- - 12.5 - Relationship with [U2] - 299 -- - 12.6 - Complete Fans - 301 -- - 12.7 - Problems - 304 -- - A1 - Positive Direction of Local Monodromy - 307 -- - A2 - Proper Base Change Theorem for Topological Spaces - 310</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hodge theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logarithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hodge-Struktur</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logarithmus</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodge theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logarithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Struktur</subfield><subfield code="0">(DE-588)4406134-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logarithmus</subfield><subfield code="0">(DE-588)4168047-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Logarithmus</subfield><subfield code="0">(DE-588)4168047-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hodge-Struktur</subfield><subfield code="0">(DE-588)4406134-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usui, Sampei</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-691-13821-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-691-13821-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028587742</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043163551 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:26Z |
institution | BVB |
isbn | 0691138222 9780691138220 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028587742 |
oclc_num | 761158505 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (ix, 336 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Kato, K., (Kazuya) Verfasser aut Classifying spaces of degenerating polarized Hodge structures Kazuya Kato and Sampei Usui Princeton, N.J. Princeton University Press 2009 1 Online-Ressource (ix, 336 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 169 Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 315-319) and index In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory 0.1 - Hodge Theory - 7 -- - 0.2 - Logarithmic Hodge Theory - 11 -- - 0.3 - Griffiths Domains and Moduli of PH - 24 -- - 0.4 - Toroidal Partial Compactifications of [Gamma]/D and Moduli of PLH - 30 -- - 0.5 - Fundamental Diagram and Other Enlargements of D - 43 -- - 0.7 - Notation and Convention - 67 -- - Chapter 1 - Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits - 70 -- - 1.1 - Hodge Structures and Polarized Hodge Structures - 70 -- - 1.2 - Classifying Spaces of Hodge Structures - 71 -- - 1.3 - Extended Classifying Spaces - 72 -- - Chapter 2 - Logarithmic Hodge Structures - 75 -- - 2.1 - Logarithmic Structures - 75 -- - 2.2 - Ringed Spaces (X[superscript log], O[subscript X superscript log]) - 81 -- - 2.3 - Local Systems on X[superscript log] - 88 -- - 2.4 - Polarized Logarithmic Hodge Structures - 94 -- - 2.5 - Nilpotent Orbits and Period Maps - 97 -- - 2.6 - Logarithmic Mixed Hodge Structures - 105 -- - Chapter 3 - Strong Topology and Logarithmic Manifolds - 107 -- - 3.1 - Strong Topology - 107 -- - 3.2 - Generalizations of Analytic Spaces - 115 -- - 3.3 - Sets E[subscript sigma] and E[subscript sigma superscript sharp] - 120 -- - 3.4 - Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], E[subscript sigma superscript sharp], and D[subscript Sigma superscript sharp] - 125 -- - 3.5 - Infinitesimal Calculus and Logarithmic Manifolds - 127 -- - 3.6 - Logarithmic Modifications - 133 -- - Chapter 4 - Main Results - 146 -- - 4.1 - Theorem A: The Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], and [Gamma]/D[subscript Sigma sharp] - 146 -- - 4.2 - Theorem B: The Functor PLH[subscript phi] - 147 -- - 4.3 - Extensions of Period Maps - 148 -- - 4.4 - Infinitesimal Period Maps - 153 -- - Chapter 5 - Fundamental Diagram - 157 -- - 5.1 - Borel-Serre Spaces (Review) - 158 -- - 5.2 - Spaces of SL(2)-Orbits (Review) - 165 -- - 5.3 - Spaces of Valuative Nilpotent Orbits - 170 -- - 5.4 - Valuative Nilpotent i-Orbits and SL(2)-Orbits - 173 -- - Chapter 6 - The Map [psi] : D[subscript val superscript sharp] to D[subscript SL] (2) - 175 -- - 6.1 - Review of [CKS] and Some Related Results - 175 -- - 6.2 - Proof of Theorem 5.4.2 - 186 -- - 6.3 - Proof of Theorem 5.4.3 (i) - 190 -- - 6.4 - Proofs of Theorem 5.4.3 (ii) and Theorem 5.4.4 - 195 -- - Chapter 7 - Proof of Theorem A - 205 -- - 7.1 - Proof of Theorem A (i) - 205 -- - 7.2 - Action of [sigma subscript C] on E[subscript sigma] - 209 -- - 7.3 - Proof of Theorem A for [Gamma]([sigma])[superscript gp]/D[subscript sigma] - 215 -- - 7.4 - Proof of Theorem A for [Gamma]/D[subscript Sigma] - 220 -- - Chapter 8 - Proof of Theorem B - 226 -- - 8.1 - Logarithmic Local Systems - 226 -- - 8.2 - Proof of Theorem B - 229 -- - 8.3 - Relationship among Categories of Generalized Analytic Spaces - 235 -- - 8.4 - Proof of Theorem 0.5.29 - 241 -- - Chapter 9 - [flat]-Spaces - 244 -- - 9.1 - Definitions and Main Properties - 244 -- - 9.2 - Proofs of Theorem 9.1.4 for [Gamma]/X[subscript BS superscript flat], [Gamma]/D[superscript flat subscript BS], and [Gamma]/D[subscript BS, val superscript flat] - 246 -- - 9.3 - Proof of Theorem 9.1.4 for [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 248 -- - 9.4 - Extended Period Maps - 249 -- - Chapter 10 - Local Structures of D[subscript SL(2)] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 251 -- - 10.1 - Local Structures of D[subscript SL(2)] - 251 -- - 10.2 - A Special Open Neighborhood U(p) - 255 -- - 10.3 - Proof of Theorem 10.1.3 - 263 -- - 10.4 - Local Structures of D[subscript SL(2), less than or equal 1] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat] - 269 -- - Chapter 11 - Moduli of PLH with Coefficients - 271 -- - 11.1 - Space [Gamma]/D[subscript Sigma superscript A] - 271 -- - 11.2 - PLH with Coefficients - 274 -- - 11.3 - Moduli - 275 -- - Chapter 12 - Examples and Problems - 277 -- - 12.1 - Siegel Upper Half Spaces - 277 -- - 12.2 - Case G[subscript R] [bsime] O(1, n -- 1, R) - 281 -- - 12.3 - Example of Weight 3 (A) - 290 -- - 12.4 - Example of Weight 3 (B) - 295 -- - 12.5 - Relationship with [U2] - 299 -- - 12.6 - Complete Fans - 301 -- - 12.7 - Problems - 304 -- - A1 - Positive Direction of Local Monodromy - 307 -- - A2 - Proper Base Change Theorem for Topological Spaces - 310 MATHEMATICS / Topology bisacsh Hodge theory fast Logarithms fast Hodge-Struktur swd Hodge-Theorie swd Logarithmus swd Hodge theory Logarithms Hodge-Struktur (DE-588)4406134-1 gnd rswk-swf Logarithmus (DE-588)4168047-9 gnd rswk-swf Hodge-Theorie (DE-588)4135967-7 gnd rswk-swf Hodge-Theorie (DE-588)4135967-7 s Logarithmus (DE-588)4168047-9 s 1\p DE-604 Hodge-Struktur (DE-588)4406134-1 s 2\p DE-604 Usui, Sampei Sonstige oth Erscheint auch als Druck-Ausgabe, Hardcover 0-691-13821-4 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-691-13821-3 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kato, K., (Kazuya) Classifying spaces of degenerating polarized Hodge structures MATHEMATICS / Topology bisacsh Hodge theory fast Logarithms fast Hodge-Struktur swd Hodge-Theorie swd Logarithmus swd Hodge theory Logarithms Hodge-Struktur (DE-588)4406134-1 gnd Logarithmus (DE-588)4168047-9 gnd Hodge-Theorie (DE-588)4135967-7 gnd |
subject_GND | (DE-588)4406134-1 (DE-588)4168047-9 (DE-588)4135967-7 |
title | Classifying spaces of degenerating polarized Hodge structures |
title_auth | Classifying spaces of degenerating polarized Hodge structures |
title_exact_search | Classifying spaces of degenerating polarized Hodge structures |
title_full | Classifying spaces of degenerating polarized Hodge structures Kazuya Kato and Sampei Usui |
title_fullStr | Classifying spaces of degenerating polarized Hodge structures Kazuya Kato and Sampei Usui |
title_full_unstemmed | Classifying spaces of degenerating polarized Hodge structures Kazuya Kato and Sampei Usui |
title_short | Classifying spaces of degenerating polarized Hodge structures |
title_sort | classifying spaces of degenerating polarized hodge structures |
topic | MATHEMATICS / Topology bisacsh Hodge theory fast Logarithms fast Hodge-Struktur swd Hodge-Theorie swd Logarithmus swd Hodge theory Logarithms Hodge-Struktur (DE-588)4406134-1 gnd Logarithmus (DE-588)4168047-9 gnd Hodge-Theorie (DE-588)4135967-7 gnd |
topic_facet | MATHEMATICS / Topology Hodge theory Logarithms Hodge-Struktur Hodge-Theorie Logarithmus |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=454412 |
work_keys_str_mv | AT katokkazuya classifyingspacesofdegeneratingpolarizedhodgestructures AT usuisampei classifyingspacesofdegeneratingpolarizedhodgestructures |