Complex polynomials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge studies in advanced mathematics
75 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 416-419) and index Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; Notations; 1 The algebra of polynomials; 2 The degree principle and the fundamental theorem of algebra; 3 The Jacobian problem; 4 Analytic and harmonic functions in the unit disc; 5 Circular regions and Grace's theorem; 6 The Ilieff-Sendov conjecture; 7 Self-inversive polynomials; 8 Duality and an extension of Grace's theorem to rational functions; 9 Real polynomials; 10 Level curves; 11 Miscellaneous topics; References; Index This book studies the geometric theory of polynomials and rational functions in the plane. The theory is carefully constructed bearing in mind the needs of graduate students. Several unsolved problems are presented as well as the full solutions to some well known conjectures |
Beschreibung: | 1 Online-Ressource (xix, 428 pages) |
ISBN: | 0511065396 0511067526 0521400686 9780511065392 9780511067525 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043163441 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 0511065396 |c electronic bk. |9 0-511-06539-6 | ||
020 | |a 0511067526 |9 0-511-06752-6 | ||
020 | |a 0521400686 |9 0-521-40068-6 | ||
020 | |a 9780511065392 |c electronic bk. |9 978-0-511-06539-2 | ||
020 | |a 9780511067525 |9 978-0-511-06752-5 | ||
035 | |a (OCoLC)228111000 | ||
035 | |a (DE-599)BVBBV043163441 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.9/42 |2 21 | |
100 | 1 | |a Sheil-Small, T., (Terence) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex polynomials |c T. Sheil-Small |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 Online-Ressource (xix, 428 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics |v 75 | |
500 | |a Includes bibliographical references (pages 416-419) and index | ||
500 | |a Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; Notations; 1 The algebra of polynomials; 2 The degree principle and the fundamental theorem of algebra; 3 The Jacobian problem; 4 Analytic and harmonic functions in the unit disc; 5 Circular regions and Grace's theorem; 6 The Ilieff-Sendov conjecture; 7 Self-inversive polynomials; 8 Duality and an extension of Grace's theorem to rational functions; 9 Real polynomials; 10 Level curves; 11 Miscellaneous topics; References; Index | ||
500 | |a This book studies the geometric theory of polynomials and rational functions in the plane. The theory is carefully constructed bearing in mind the needs of graduate students. Several unsolved problems are presented as well as the full solutions to some well known conjectures | ||
650 | 4 | |a Polynômes | |
650 | 4 | |a Fonctions d'une variable complexe | |
650 | 7 | |a MATHEMATICS / Algebra / Elementary |2 bisacsh | |
650 | 7 | |a Functions of complex variables |2 fast | |
650 | 7 | |a Polynomials |2 fast | |
650 | 4 | |a Polynomials | |
650 | 4 | |a Functions of complex variables | |
650 | 0 | 7 | |a Komplexe Funktion |0 (DE-588)4217733-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Komplexe Funktion |0 (DE-588)4217733-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028587632 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175636091109376 |
---|---|
any_adam_object | |
author | Sheil-Small, T., (Terence) |
author_facet | Sheil-Small, T., (Terence) |
author_role | aut |
author_sort | Sheil-Small, T., (Terence) |
author_variant | t t s s tts ttss |
building | Verbundindex |
bvnumber | BV043163441 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)228111000 (DE-599)BVBBV043163441 |
dewey-full | 512.9/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/42 |
dewey-search | 512.9/42 |
dewey-sort | 3512.9 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03165nmm a2200589zcb4500</leader><controlfield tag="001">BV043163441</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511065396</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-511-06539-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511067526</subfield><subfield code="9">0-511-06752-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521400686</subfield><subfield code="9">0-521-40068-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511065392</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-511-06539-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511067525</subfield><subfield code="9">978-0-511-06752-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)228111000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043163441</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/42</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sheil-Small, T., (Terence)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex polynomials</subfield><subfield code="c">T. Sheil-Small</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 428 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">75</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 416-419) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; Notations; 1 The algebra of polynomials; 2 The degree principle and the fundamental theorem of algebra; 3 The Jacobian problem; 4 Analytic and harmonic functions in the unit disc; 5 Circular regions and Grace's theorem; 6 The Ilieff-Sendov conjecture; 7 Self-inversive polynomials; 8 Duality and an extension of Grace's theorem to rational functions; 9 Real polynomials; 10 Level curves; 11 Miscellaneous topics; References; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book studies the geometric theory of polynomials and rational functions in the plane. The theory is carefully constructed bearing in mind the needs of graduate students. Several unsolved problems are presented as well as the full solutions to some well known conjectures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynômes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions d'une variable complexe</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Elementary</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of complex variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Funktion</subfield><subfield code="0">(DE-588)4217733-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexe Funktion</subfield><subfield code="0">(DE-588)4217733-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028587632</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043163441 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:26Z |
institution | BVB |
isbn | 0511065396 0511067526 0521400686 9780511065392 9780511067525 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028587632 |
oclc_num | 228111000 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xix, 428 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Sheil-Small, T., (Terence) Verfasser aut Complex polynomials T. Sheil-Small Cambridge Cambridge University Press 2002 1 Online-Ressource (xix, 428 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 75 Includes bibliographical references (pages 416-419) and index Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; Notations; 1 The algebra of polynomials; 2 The degree principle and the fundamental theorem of algebra; 3 The Jacobian problem; 4 Analytic and harmonic functions in the unit disc; 5 Circular regions and Grace's theorem; 6 The Ilieff-Sendov conjecture; 7 Self-inversive polynomials; 8 Duality and an extension of Grace's theorem to rational functions; 9 Real polynomials; 10 Level curves; 11 Miscellaneous topics; References; Index This book studies the geometric theory of polynomials and rational functions in the plane. The theory is carefully constructed bearing in mind the needs of graduate students. Several unsolved problems are presented as well as the full solutions to some well known conjectures Polynômes Fonctions d'une variable complexe MATHEMATICS / Algebra / Elementary bisacsh Functions of complex variables fast Polynomials fast Polynomials Functions of complex variables Komplexe Funktion (DE-588)4217733-9 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Polynom (DE-588)4046711-9 s 1\p DE-604 Komplexe Funktion (DE-588)4217733-9 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sheil-Small, T., (Terence) Complex polynomials Polynômes Fonctions d'une variable complexe MATHEMATICS / Algebra / Elementary bisacsh Functions of complex variables fast Polynomials fast Polynomials Functions of complex variables Komplexe Funktion (DE-588)4217733-9 gnd Polynom (DE-588)4046711-9 gnd |
subject_GND | (DE-588)4217733-9 (DE-588)4046711-9 |
title | Complex polynomials |
title_auth | Complex polynomials |
title_exact_search | Complex polynomials |
title_full | Complex polynomials T. Sheil-Small |
title_fullStr | Complex polynomials T. Sheil-Small |
title_full_unstemmed | Complex polynomials T. Sheil-Small |
title_short | Complex polynomials |
title_sort | complex polynomials |
topic | Polynômes Fonctions d'une variable complexe MATHEMATICS / Algebra / Elementary bisacsh Functions of complex variables fast Polynomials fast Polynomials Functions of complex variables Komplexe Funktion (DE-588)4217733-9 gnd Polynom (DE-588)4046711-9 gnd |
topic_facet | Polynômes Fonctions d'une variable complexe MATHEMATICS / Algebra / Elementary Functions of complex variables Polynomials Komplexe Funktion Polynom |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120438 |
work_keys_str_mv | AT sheilsmalltterence complexpolynomials |