Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
c2005
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin |
Beschreibung: | 1 Online-Ressource (xv, 354 p.) |
ISBN: | 186094714X 9781860947148 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043162029 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2005 |||| o||u| ||||||eng d | ||
020 | |a 186094714X |c electronic bk. |9 1-86094-714-X | ||
020 | |a 9781860947148 |9 978-1-86094-714-8 | ||
035 | |a (OCoLC)71291234 | ||
035 | |a (DE-599)BVBBV043162029 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.732 |2 22 | |
100 | 1 | |a Reich, Simeon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces |c Simeon Reich, David Shoikhet |
264 | 1 | |a London |b Imperial College Press |c c2005 | |
300 | |a 1 Online-Ressource (xv, 354 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin | ||
650 | 7 | |a MATHEMATICS / Transformations |2 bisacsh | |
650 | 7 | |a Banach spaces |2 fast | |
650 | 7 | |a Nonlinear theories |2 fast | |
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Banach spaces | |
650 | 0 | 7 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Halbgruppe |0 (DE-588)4139678-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Halbgruppe |0 (DE-588)4139678-9 |D s |
689 | 0 | 1 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |D s |
689 | 1 | 1 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Shoiykhet, David |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028586220 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175633270439936 |
---|---|
any_adam_object | |
author | Reich, Simeon |
author_facet | Reich, Simeon |
author_role | aut |
author_sort | Reich, Simeon |
author_variant | s r sr |
building | Verbundindex |
bvnumber | BV043162029 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)71291234 (DE-599)BVBBV043162029 |
dewey-full | 515/.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.732 |
dewey-search | 515/.732 |
dewey-sort | 3515 3732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02929nmm a2200553zc 4500</leader><controlfield tag="001">BV043162029</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">186094714X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-86094-714-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860947148</subfield><subfield code="9">978-1-86094-714-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71291234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043162029</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.732</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reich, Simeon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces</subfield><subfield code="c">Simeon Reich, David Shoikhet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">c2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 354 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Transformations</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Banach spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear theories</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Halbgruppe</subfield><subfield code="0">(DE-588)4139678-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Halbgruppe</subfield><subfield code="0">(DE-588)4139678-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shoiykhet, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028586220</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043162029 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:23Z |
institution | BVB |
isbn | 186094714X 9781860947148 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028586220 |
oclc_num | 71291234 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 354 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Imperial College Press |
record_format | marc |
spelling | Reich, Simeon Verfasser aut Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces Simeon Reich, David Shoikhet London Imperial College Press c2005 1 Online-Ressource (xv, 354 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin MATHEMATICS / Transformations bisacsh Banach spaces fast Nonlinear theories fast Nonlinear theories Banach spaces Fixpunkttheorie (DE-588)4293945-8 gnd rswk-swf Nichtlineare Halbgruppe (DE-588)4139678-9 gnd rswk-swf Banach-Raum (DE-588)4004402-6 gnd rswk-swf Nichtlineare Halbgruppe (DE-588)4139678-9 s Banach-Raum (DE-588)4004402-6 s 1\p DE-604 Fixpunkttheorie (DE-588)4293945-8 s 2\p DE-604 Shoiykhet, David Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Reich, Simeon Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces MATHEMATICS / Transformations bisacsh Banach spaces fast Nonlinear theories fast Nonlinear theories Banach spaces Fixpunkttheorie (DE-588)4293945-8 gnd Nichtlineare Halbgruppe (DE-588)4139678-9 gnd Banach-Raum (DE-588)4004402-6 gnd |
subject_GND | (DE-588)4293945-8 (DE-588)4139678-9 (DE-588)4004402-6 |
title | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces |
title_auth | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces |
title_exact_search | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces |
title_full | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces Simeon Reich, David Shoikhet |
title_fullStr | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces Simeon Reich, David Shoikhet |
title_full_unstemmed | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces Simeon Reich, David Shoikhet |
title_short | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces |
title_sort | nonlinear semigroups fixed points and geometry of domains in banach spaces |
topic | MATHEMATICS / Transformations bisacsh Banach spaces fast Nonlinear theories fast Nonlinear theories Banach spaces Fixpunkttheorie (DE-588)4293945-8 gnd Nichtlineare Halbgruppe (DE-588)4139678-9 gnd Banach-Raum (DE-588)4004402-6 gnd |
topic_facet | MATHEMATICS / Transformations Banach spaces Nonlinear theories Fixpunkttheorie Nichtlineare Halbgruppe Banach-Raum |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=167289 |
work_keys_str_mv | AT reichsimeon nonlinearsemigroupsfixedpointsandgeometryofdomainsinbanachspaces AT shoiykhetdavid nonlinearsemigroupsfixedpointsandgeometryofdomainsinbanachspaces |