Image processing and jump regression analysis:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Qiu, Peihua (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hoboken, N.J. John Wiley ©2005
Schriftenreihe:Wiley series in probability and statistics
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:"Wiley-Interscience."
Includes bibliographical references (pages 281-300) and index
Cover -- Contents -- Preface -- 1 Introduction -- 1.1 Images and image representation -- 1.2 Regression curves and sugaces with jumps -- 1.3 Edge detection, image restoration, and jump regression analysis -- 1.4 Statistical process control and some other related topics -- 1.5 Organization of the book -- Problems -- 2 Basic Statistical Concepts and Conventional Smoothing Techniques -- 2.1 Introduction -- 2.2 Some basic statistical concepts and terminologies -- 2.2.1 Populations, samples, and distributions -- 2.2.2 Point estimation of population parameters -- 2.2.3 Confidence intervals and hypothesis testing -- 2.2.4 Maximum likelihood estimation and least squares estimation -- 2.3 Nadaraya- Watson and other kernel smoothing techniques -- 2.3.1 Univariate kernel estimators -- 2.3.2 Some statistical properties of kernel estimators -- 2.3.3 Multivariate kernel estimators -- 2.4 Local polynomial kernel smoothing techniques -- 2.4.1 Univariate local polynomial kernel estimators --
- 2.4.2 Some statistical properties -- 2.4.3 Multivariate local polynomial kernel estimators -- 2.4.4 Bandwidth selection -- 2.5 Spline smoothing procedures -- 2.5.1 Univariate smoothing spline estimation -- 2.5.2 Selection of the smoothing parameter -- 2.5.3 Multivariate smoothing spline estimation -- 2.5.4 Regression spline estimation -- 2.6 Wavelet transformation methods -- 2.6.1 Function estimation based on Fourier transformation -- 2.6.2 Univariate wavelet transformations -- 2.6.3 Bivariate wavelet transformations -- Problems -- 3 Estimation of Jump Regression Curves -- 3.1 Introduction -- 3.2 Jump detection when the number of jumps is known -- 3.2.1 Difference kernel estimation procedures -- 3.2.2 Jump detection based on local linear kernel smoothing -- 3.2.3 Estimation of jump regression functions based on semiparametric modeling -- 3.2.4 Estimation of jump regression functions by spline smoothing -- 3.2.5 Jump and cusp detection by wavelet transformations --
- 3.3 Jump estimation when the number of jumps is unknown -- 3.3.1 Jump detection by comparing three local estimators -- 3.3.2 Estimation of the number of jumps by a sequence of hypothesis tests -- 3.3.3 Jump detection by DAKE -- 3.3.4 Jump detection by local polynomial regression -- 3.4 Jump-preserving curve estimation -- 3.4.1 Jump curve estimation by split linear smoothing -- 3.4.2 Jump-preserving curve fitting based on local piecewise-linear kernel estimation -- 3.4.3 Jump-preserving smoothers based on robust estimation -- 3.5 Some discussions -- Problems -- 4 Estimation of Jump Location Curves of Regression Surfaces -- 4.1 Introduction -- 4.2 Jump detection when the number of jump location curves is known -- 4.2.1 Jump detection by RDKE -- 4.2.2 Minimax edge detection -- 4.2.3 Jump estimation based on a contrast statistic -- 4.2.4 Algorithms for tracking the JLCs -- 4.2.5 Estimation of JLCs by wavelet transformations -- 4.3 Detection of arbitrary jumps by local smoothing --
- 4.3.1 Treat JLCs as a pointset in the design space -- 4.3.2 Jump detection by local linear estimation -- 4.3.3 Two modijication procedures -- 4.4 Jump detection in two or more given directions -- 4.4.1 Jump detection in two given directions -- 4.4.2 Measuring the p
Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic breakdown of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them
Beschreibung:1 Online-Ressource (xxiii, 305 pages)
ISBN:0471733156
0471733164
9780471733157
9780471733164

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen