Image processing and jump regression analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
John Wiley
©2005
|
Schriftenreihe: | Wiley series in probability and statistics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | "Wiley-Interscience." Includes bibliographical references (pages 281-300) and index Cover -- Contents -- Preface -- 1 Introduction -- 1.1 Images and image representation -- 1.2 Regression curves and sugaces with jumps -- 1.3 Edge detection, image restoration, and jump regression analysis -- 1.4 Statistical process control and some other related topics -- 1.5 Organization of the book -- Problems -- 2 Basic Statistical Concepts and Conventional Smoothing Techniques -- 2.1 Introduction -- 2.2 Some basic statistical concepts and terminologies -- 2.2.1 Populations, samples, and distributions -- 2.2.2 Point estimation of population parameters -- 2.2.3 Confidence intervals and hypothesis testing -- 2.2.4 Maximum likelihood estimation and least squares estimation -- 2.3 Nadaraya- Watson and other kernel smoothing techniques -- 2.3.1 Univariate kernel estimators -- 2.3.2 Some statistical properties of kernel estimators -- 2.3.3 Multivariate kernel estimators -- 2.4 Local polynomial kernel smoothing techniques -- 2.4.1 Univariate local polynomial kernel estimators -- - 2.4.2 Some statistical properties -- 2.4.3 Multivariate local polynomial kernel estimators -- 2.4.4 Bandwidth selection -- 2.5 Spline smoothing procedures -- 2.5.1 Univariate smoothing spline estimation -- 2.5.2 Selection of the smoothing parameter -- 2.5.3 Multivariate smoothing spline estimation -- 2.5.4 Regression spline estimation -- 2.6 Wavelet transformation methods -- 2.6.1 Function estimation based on Fourier transformation -- 2.6.2 Univariate wavelet transformations -- 2.6.3 Bivariate wavelet transformations -- Problems -- 3 Estimation of Jump Regression Curves -- 3.1 Introduction -- 3.2 Jump detection when the number of jumps is known -- 3.2.1 Difference kernel estimation procedures -- 3.2.2 Jump detection based on local linear kernel smoothing -- 3.2.3 Estimation of jump regression functions based on semiparametric modeling -- 3.2.4 Estimation of jump regression functions by spline smoothing -- 3.2.5 Jump and cusp detection by wavelet transformations -- - 3.3 Jump estimation when the number of jumps is unknown -- 3.3.1 Jump detection by comparing three local estimators -- 3.3.2 Estimation of the number of jumps by a sequence of hypothesis tests -- 3.3.3 Jump detection by DAKE -- 3.3.4 Jump detection by local polynomial regression -- 3.4 Jump-preserving curve estimation -- 3.4.1 Jump curve estimation by split linear smoothing -- 3.4.2 Jump-preserving curve fitting based on local piecewise-linear kernel estimation -- 3.4.3 Jump-preserving smoothers based on robust estimation -- 3.5 Some discussions -- Problems -- 4 Estimation of Jump Location Curves of Regression Surfaces -- 4.1 Introduction -- 4.2 Jump detection when the number of jump location curves is known -- 4.2.1 Jump detection by RDKE -- 4.2.2 Minimax edge detection -- 4.2.3 Jump estimation based on a contrast statistic -- 4.2.4 Algorithms for tracking the JLCs -- 4.2.5 Estimation of JLCs by wavelet transformations -- 4.3 Detection of arbitrary jumps by local smoothing -- - 4.3.1 Treat JLCs as a pointset in the design space -- 4.3.2 Jump detection by local linear estimation -- 4.3.3 Two modijication procedures -- 4.4 Jump detection in two or more given directions -- 4.4.1 Jump detection in two given directions -- 4.4.2 Measuring the p Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic breakdown of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them |
Beschreibung: | 1 Online-Ressource (xxiii, 305 pages) |
ISBN: | 0471733156 0471733164 9780471733157 9780471733164 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043161224 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2005 |||| o||u| ||||||eng d | ||
020 | |a 0471733156 |9 0-471-73315-6 | ||
020 | |a 0471733164 |c electronic bk. |9 0-471-73316-4 | ||
020 | |a 9780471733157 |9 978-0-471-73315-7 | ||
020 | |a 9780471733164 |c electronic bk. |9 978-0-471-73316-4 | ||
035 | |a (OCoLC)232157560 | ||
035 | |a (DE-599)BVBBV043161224 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 006.3/7 |2 22 | |
100 | 1 | |a Qiu, Peihua |e Verfasser |4 aut | |
245 | 1 | 0 | |a Image processing and jump regression analysis |c Peihua Qiu |
264 | 1 | |a Hoboken, N.J. |b John Wiley |c ©2005 | |
300 | |a 1 Online-Ressource (xxiii, 305 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley series in probability and statistics | |
500 | |a "Wiley-Interscience." | ||
500 | |a Includes bibliographical references (pages 281-300) and index | ||
500 | |a Cover -- Contents -- Preface -- 1 Introduction -- 1.1 Images and image representation -- 1.2 Regression curves and sugaces with jumps -- 1.3 Edge detection, image restoration, and jump regression analysis -- 1.4 Statistical process control and some other related topics -- 1.5 Organization of the book -- Problems -- 2 Basic Statistical Concepts and Conventional Smoothing Techniques -- 2.1 Introduction -- 2.2 Some basic statistical concepts and terminologies -- 2.2.1 Populations, samples, and distributions -- 2.2.2 Point estimation of population parameters -- 2.2.3 Confidence intervals and hypothesis testing -- 2.2.4 Maximum likelihood estimation and least squares estimation -- 2.3 Nadaraya- Watson and other kernel smoothing techniques -- 2.3.1 Univariate kernel estimators -- 2.3.2 Some statistical properties of kernel estimators -- 2.3.3 Multivariate kernel estimators -- 2.4 Local polynomial kernel smoothing techniques -- 2.4.1 Univariate local polynomial kernel estimators -- | ||
500 | |a - 2.4.2 Some statistical properties -- 2.4.3 Multivariate local polynomial kernel estimators -- 2.4.4 Bandwidth selection -- 2.5 Spline smoothing procedures -- 2.5.1 Univariate smoothing spline estimation -- 2.5.2 Selection of the smoothing parameter -- 2.5.3 Multivariate smoothing spline estimation -- 2.5.4 Regression spline estimation -- 2.6 Wavelet transformation methods -- 2.6.1 Function estimation based on Fourier transformation -- 2.6.2 Univariate wavelet transformations -- 2.6.3 Bivariate wavelet transformations -- Problems -- 3 Estimation of Jump Regression Curves -- 3.1 Introduction -- 3.2 Jump detection when the number of jumps is known -- 3.2.1 Difference kernel estimation procedures -- 3.2.2 Jump detection based on local linear kernel smoothing -- 3.2.3 Estimation of jump regression functions based on semiparametric modeling -- 3.2.4 Estimation of jump regression functions by spline smoothing -- 3.2.5 Jump and cusp detection by wavelet transformations -- | ||
500 | |a - 3.3 Jump estimation when the number of jumps is unknown -- 3.3.1 Jump detection by comparing three local estimators -- 3.3.2 Estimation of the number of jumps by a sequence of hypothesis tests -- 3.3.3 Jump detection by DAKE -- 3.3.4 Jump detection by local polynomial regression -- 3.4 Jump-preserving curve estimation -- 3.4.1 Jump curve estimation by split linear smoothing -- 3.4.2 Jump-preserving curve fitting based on local piecewise-linear kernel estimation -- 3.4.3 Jump-preserving smoothers based on robust estimation -- 3.5 Some discussions -- Problems -- 4 Estimation of Jump Location Curves of Regression Surfaces -- 4.1 Introduction -- 4.2 Jump detection when the number of jump location curves is known -- 4.2.1 Jump detection by RDKE -- 4.2.2 Minimax edge detection -- 4.2.3 Jump estimation based on a contrast statistic -- 4.2.4 Algorithms for tracking the JLCs -- 4.2.5 Estimation of JLCs by wavelet transformations -- 4.3 Detection of arbitrary jumps by local smoothing -- | ||
500 | |a - 4.3.1 Treat JLCs as a pointset in the design space -- 4.3.2 Jump detection by local linear estimation -- 4.3.3 Two modijication procedures -- 4.4 Jump detection in two or more given directions -- 4.4.1 Jump detection in two given directions -- 4.4.2 Measuring the p | ||
500 | |a Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic breakdown of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them | ||
650 | 4 | |a Traitement d'images | |
650 | 4 | |a Analyse de régression | |
650 | 7 | |a COMPUTERS / Computer Vision & Pattern Recognition |2 bisacsh | |
650 | 7 | |a Image processing |2 fast | |
650 | 7 | |a Regression analysis |2 fast | |
650 | 4 | |a Image processing | |
650 | 4 | |a Regression analysis | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-471-42099-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-471-42099-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-471-42099-6 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028585415 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175631720644608 |
---|---|
any_adam_object | |
author | Qiu, Peihua |
author_facet | Qiu, Peihua |
author_role | aut |
author_sort | Qiu, Peihua |
author_variant | p q pq |
building | Verbundindex |
bvnumber | BV043161224 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)232157560 (DE-599)BVBBV043161224 |
dewey-full | 006.3/7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/7 |
dewey-search | 006.3/7 |
dewey-sort | 16.3 17 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05872nmm a2200565zc 4500</leader><controlfield tag="001">BV043161224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471733156</subfield><subfield code="9">0-471-73315-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471733164</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-471-73316-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471733157</subfield><subfield code="9">978-0-471-73315-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471733164</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-471-73316-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)232157560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043161224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/7</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qiu, Peihua</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image processing and jump regression analysis</subfield><subfield code="c">Peihua Qiu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">John Wiley</subfield><subfield code="c">©2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 305 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in probability and statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Wiley-Interscience."</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 281-300) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Contents -- Preface -- 1 Introduction -- 1.1 Images and image representation -- 1.2 Regression curves and sugaces with jumps -- 1.3 Edge detection, image restoration, and jump regression analysis -- 1.4 Statistical process control and some other related topics -- 1.5 Organization of the book -- Problems -- 2 Basic Statistical Concepts and Conventional Smoothing Techniques -- 2.1 Introduction -- 2.2 Some basic statistical concepts and terminologies -- 2.2.1 Populations, samples, and distributions -- 2.2.2 Point estimation of population parameters -- 2.2.3 Confidence intervals and hypothesis testing -- 2.2.4 Maximum likelihood estimation and least squares estimation -- 2.3 Nadaraya- Watson and other kernel smoothing techniques -- 2.3.1 Univariate kernel estimators -- 2.3.2 Some statistical properties of kernel estimators -- 2.3.3 Multivariate kernel estimators -- 2.4 Local polynomial kernel smoothing techniques -- 2.4.1 Univariate local polynomial kernel estimators -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 2.4.2 Some statistical properties -- 2.4.3 Multivariate local polynomial kernel estimators -- 2.4.4 Bandwidth selection -- 2.5 Spline smoothing procedures -- 2.5.1 Univariate smoothing spline estimation -- 2.5.2 Selection of the smoothing parameter -- 2.5.3 Multivariate smoothing spline estimation -- 2.5.4 Regression spline estimation -- 2.6 Wavelet transformation methods -- 2.6.1 Function estimation based on Fourier transformation -- 2.6.2 Univariate wavelet transformations -- 2.6.3 Bivariate wavelet transformations -- Problems -- 3 Estimation of Jump Regression Curves -- 3.1 Introduction -- 3.2 Jump detection when the number of jumps is known -- 3.2.1 Difference kernel estimation procedures -- 3.2.2 Jump detection based on local linear kernel smoothing -- 3.2.3 Estimation of jump regression functions based on semiparametric modeling -- 3.2.4 Estimation of jump regression functions by spline smoothing -- 3.2.5 Jump and cusp detection by wavelet transformations -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3.3 Jump estimation when the number of jumps is unknown -- 3.3.1 Jump detection by comparing three local estimators -- 3.3.2 Estimation of the number of jumps by a sequence of hypothesis tests -- 3.3.3 Jump detection by DAKE -- 3.3.4 Jump detection by local polynomial regression -- 3.4 Jump-preserving curve estimation -- 3.4.1 Jump curve estimation by split linear smoothing -- 3.4.2 Jump-preserving curve fitting based on local piecewise-linear kernel estimation -- 3.4.3 Jump-preserving smoothers based on robust estimation -- 3.5 Some discussions -- Problems -- 4 Estimation of Jump Location Curves of Regression Surfaces -- 4.1 Introduction -- 4.2 Jump detection when the number of jump location curves is known -- 4.2.1 Jump detection by RDKE -- 4.2.2 Minimax edge detection -- 4.2.3 Jump estimation based on a contrast statistic -- 4.2.4 Algorithms for tracking the JLCs -- 4.2.5 Estimation of JLCs by wavelet transformations -- 4.3 Detection of arbitrary jumps by local smoothing -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4.3.1 Treat JLCs as a pointset in the design space -- 4.3.2 Jump detection by local linear estimation -- 4.3.3 Two modijication procedures -- 4.4 Jump detection in two or more given directions -- 4.4.1 Jump detection in two given directions -- 4.4.2 Measuring the p</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic breakdown of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement d'images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse de régression</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Computer Vision & Pattern Recognition</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regression analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-471-42099-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-471-42099-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-471-42099-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028585415</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043161224 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:22Z |
institution | BVB |
isbn | 0471733156 0471733164 9780471733157 9780471733164 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028585415 |
oclc_num | 232157560 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxiii, 305 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | John Wiley |
record_format | marc |
series2 | Wiley series in probability and statistics |
spelling | Qiu, Peihua Verfasser aut Image processing and jump regression analysis Peihua Qiu Hoboken, N.J. John Wiley ©2005 1 Online-Ressource (xxiii, 305 pages) txt rdacontent c rdamedia cr rdacarrier Wiley series in probability and statistics "Wiley-Interscience." Includes bibliographical references (pages 281-300) and index Cover -- Contents -- Preface -- 1 Introduction -- 1.1 Images and image representation -- 1.2 Regression curves and sugaces with jumps -- 1.3 Edge detection, image restoration, and jump regression analysis -- 1.4 Statistical process control and some other related topics -- 1.5 Organization of the book -- Problems -- 2 Basic Statistical Concepts and Conventional Smoothing Techniques -- 2.1 Introduction -- 2.2 Some basic statistical concepts and terminologies -- 2.2.1 Populations, samples, and distributions -- 2.2.2 Point estimation of population parameters -- 2.2.3 Confidence intervals and hypothesis testing -- 2.2.4 Maximum likelihood estimation and least squares estimation -- 2.3 Nadaraya- Watson and other kernel smoothing techniques -- 2.3.1 Univariate kernel estimators -- 2.3.2 Some statistical properties of kernel estimators -- 2.3.3 Multivariate kernel estimators -- 2.4 Local polynomial kernel smoothing techniques -- 2.4.1 Univariate local polynomial kernel estimators -- - 2.4.2 Some statistical properties -- 2.4.3 Multivariate local polynomial kernel estimators -- 2.4.4 Bandwidth selection -- 2.5 Spline smoothing procedures -- 2.5.1 Univariate smoothing spline estimation -- 2.5.2 Selection of the smoothing parameter -- 2.5.3 Multivariate smoothing spline estimation -- 2.5.4 Regression spline estimation -- 2.6 Wavelet transformation methods -- 2.6.1 Function estimation based on Fourier transformation -- 2.6.2 Univariate wavelet transformations -- 2.6.3 Bivariate wavelet transformations -- Problems -- 3 Estimation of Jump Regression Curves -- 3.1 Introduction -- 3.2 Jump detection when the number of jumps is known -- 3.2.1 Difference kernel estimation procedures -- 3.2.2 Jump detection based on local linear kernel smoothing -- 3.2.3 Estimation of jump regression functions based on semiparametric modeling -- 3.2.4 Estimation of jump regression functions by spline smoothing -- 3.2.5 Jump and cusp detection by wavelet transformations -- - 3.3 Jump estimation when the number of jumps is unknown -- 3.3.1 Jump detection by comparing three local estimators -- 3.3.2 Estimation of the number of jumps by a sequence of hypothesis tests -- 3.3.3 Jump detection by DAKE -- 3.3.4 Jump detection by local polynomial regression -- 3.4 Jump-preserving curve estimation -- 3.4.1 Jump curve estimation by split linear smoothing -- 3.4.2 Jump-preserving curve fitting based on local piecewise-linear kernel estimation -- 3.4.3 Jump-preserving smoothers based on robust estimation -- 3.5 Some discussions -- Problems -- 4 Estimation of Jump Location Curves of Regression Surfaces -- 4.1 Introduction -- 4.2 Jump detection when the number of jump location curves is known -- 4.2.1 Jump detection by RDKE -- 4.2.2 Minimax edge detection -- 4.2.3 Jump estimation based on a contrast statistic -- 4.2.4 Algorithms for tracking the JLCs -- 4.2.5 Estimation of JLCs by wavelet transformations -- 4.3 Detection of arbitrary jumps by local smoothing -- - 4.3.1 Treat JLCs as a pointset in the design space -- 4.3.2 Jump detection by local linear estimation -- 4.3.3 Two modijication procedures -- 4.4 Jump detection in two or more given directions -- 4.4.1 Jump detection in two given directions -- 4.4.2 Measuring the p Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic breakdown of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them Traitement d'images Analyse de régression COMPUTERS / Computer Vision & Pattern Recognition bisacsh Image processing fast Regression analysis fast Image processing Regression analysis Erscheint auch als Druck-Ausgabe, Hardcover 0-471-42099-9 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-471-42099-6 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936 Aggregator Volltext |
spellingShingle | Qiu, Peihua Image processing and jump regression analysis Traitement d'images Analyse de régression COMPUTERS / Computer Vision & Pattern Recognition bisacsh Image processing fast Regression analysis fast Image processing Regression analysis |
title | Image processing and jump regression analysis |
title_auth | Image processing and jump regression analysis |
title_exact_search | Image processing and jump regression analysis |
title_full | Image processing and jump regression analysis Peihua Qiu |
title_fullStr | Image processing and jump regression analysis Peihua Qiu |
title_full_unstemmed | Image processing and jump regression analysis Peihua Qiu |
title_short | Image processing and jump regression analysis |
title_sort | image processing and jump regression analysis |
topic | Traitement d'images Analyse de régression COMPUTERS / Computer Vision & Pattern Recognition bisacsh Image processing fast Regression analysis fast Image processing Regression analysis |
topic_facet | Traitement d'images Analyse de régression COMPUTERS / Computer Vision & Pattern Recognition Image processing Regression analysis |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=131936 |
work_keys_str_mv | AT qiupeihua imageprocessingandjumpregressionanalysis |