Fractional calculus: models and numerical methods
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2012
|
Schriftenreihe: | Series on complexity, nonlinearity and chaos
v. 3 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Made available through World Scientific e-Books The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives |
Beschreibung: | 1 Online-Ressource (xxiv, 400 pages) |
ISBN: | 1280669527 9781280669521 9789814355209 9789814355216 9814355208 9814355216 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043160405 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 1280669527 |9 1-280-66952-7 | ||
020 | |a 9781280669521 |9 978-1-280-66952-1 | ||
020 | |a 9789814355209 |9 978-981-4355-20-9 | ||
020 | |a 9789814355216 |c electronic bk. |9 978-981-4355-21-6 | ||
020 | |a 9814355208 |9 981-4355-20-8 | ||
020 | |a 9814355216 |c electronic bk. |9 981-4355-21-6 | ||
035 | |a (OCoLC)793804652 | ||
035 | |a (DE-599)BVBBV043160405 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.83 |2 23 | |
245 | 1 | 0 | |a Fractional calculus |b models and numerical methods |c Dumitru Baleanu [and others] |
264 | 1 | |a Singapore |b World Scientific |c 2012 | |
300 | |a 1 Online-Ressource (xxiv, 400 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on complexity, nonlinearity and chaos |v v. 3 | |
500 | |a Made available through World Scientific e-Books | ||
500 | |a The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o | ||
500 | |a Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives | ||
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 4 | |a Fractional calculus | |
650 | 0 | 7 | |a Gebrochene Analysis |0 (DE-588)4722475-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gebrochene Analysis |0 (DE-588)4722475-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Baleanu, D. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028584596 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175630147780608 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043160405 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)793804652 (DE-599)BVBBV043160405 |
dewey-full | 515.83 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.83 |
dewey-search | 515.83 |
dewey-sort | 3515.83 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03237nmm a2200505zcb4500</leader><controlfield tag="001">BV043160405</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280669527</subfield><subfield code="9">1-280-66952-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280669521</subfield><subfield code="9">978-1-280-66952-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814355209</subfield><subfield code="9">978-981-4355-20-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814355216</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4355-21-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814355208</subfield><subfield code="9">981-4355-20-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814355216</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4355-21-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)793804652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043160405</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.83</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractional calculus</subfield><subfield code="b">models and numerical methods</subfield><subfield code="c">Dumitru Baleanu [and others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 400 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on complexity, nonlinearity and chaos</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Made available through World Scientific e-Books</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gebrochene Analysis</subfield><subfield code="0">(DE-588)4722475-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gebrochene Analysis</subfield><subfield code="0">(DE-588)4722475-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baleanu, D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028584596</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043160405 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:20Z |
institution | BVB |
isbn | 1280669527 9781280669521 9789814355209 9789814355216 9814355208 9814355216 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028584596 |
oclc_num | 793804652 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxiv, 400 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific |
record_format | marc |
series2 | Series on complexity, nonlinearity and chaos |
spelling | Fractional calculus models and numerical methods Dumitru Baleanu [and others] Singapore World Scientific 2012 1 Online-Ressource (xxiv, 400 pages) txt rdacontent c rdamedia cr rdacarrier Series on complexity, nonlinearity and chaos v. 3 Made available through World Scientific e-Books The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fractional calculus Gebrochene Analysis (DE-588)4722475-7 gnd rswk-swf Gebrochene Analysis (DE-588)4722475-7 s 1\p DE-604 Baleanu, D. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fractional calculus models and numerical methods MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fractional calculus Gebrochene Analysis (DE-588)4722475-7 gnd |
subject_GND | (DE-588)4722475-7 |
title | Fractional calculus models and numerical methods |
title_auth | Fractional calculus models and numerical methods |
title_exact_search | Fractional calculus models and numerical methods |
title_full | Fractional calculus models and numerical methods Dumitru Baleanu [and others] |
title_fullStr | Fractional calculus models and numerical methods Dumitru Baleanu [and others] |
title_full_unstemmed | Fractional calculus models and numerical methods Dumitru Baleanu [and others] |
title_short | Fractional calculus |
title_sort | fractional calculus models and numerical methods |
title_sub | models and numerical methods |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fractional calculus Gebrochene Analysis (DE-588)4722475-7 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Fractional calculus Gebrochene Analysis |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457176 |
work_keys_str_mv | AT baleanud fractionalcalculusmodelsandnumericalmethods |