Quantized partial differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ
World Scientific
c2004
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 461-471) and index This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro |
Beschreibung: | 1 Online-Ressource (xiii, 485 p.) |
ISBN: | 9789812387646 9789812562517 9812387641 9812562516 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043160107 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||eng d | ||
020 | |a 9789812387646 |9 978-981-238-764-6 | ||
020 | |a 9789812562517 |c electronic bk. |9 978-981-256-251-7 | ||
020 | |a 9812387641 |9 981-238-764-1 | ||
020 | |a 9812387641 |9 981-238-764-1 | ||
020 | |a 9812562516 |c electronic bk. |9 981-256-251-6 | ||
035 | |a (OCoLC)228114414 | ||
035 | |a (DE-599)BVBBV043160107 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.1522 |2 22 | |
100 | 1 | |a Prastaro, Agostino |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantized partial differential equations |c A Prástaro |
264 | 1 | |a River Edge, NJ |b World Scientific |c c2004 | |
300 | |a 1 Online-Ressource (xiii, 485 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 461-471) and index | ||
500 | |a This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro | ||
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
650 | 7 | |a Quantum field theory |2 fast | |
650 | 7 | |a Quantum groups |2 fast | |
650 | 4 | |a Quantum groups | |
650 | 4 | |a Quantum field theory | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028584298 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175629539606528 |
---|---|
any_adam_object | |
author | Prastaro, Agostino |
author_facet | Prastaro, Agostino |
author_role | aut |
author_sort | Prastaro, Agostino |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV043160107 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)228114414 (DE-599)BVBBV043160107 |
dewey-full | 530.1522 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1522 |
dewey-search | 530.1522 |
dewey-sort | 3530.1522 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02645nmm a2200493zc 4500</leader><controlfield tag="001">BV043160107</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812387646</subfield><subfield code="9">978-981-238-764-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812562517</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-256-251-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812387641</subfield><subfield code="9">981-238-764-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812387641</subfield><subfield code="9">981-238-764-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812562516</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-256-251-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)228114414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043160107</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1522</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prastaro, Agostino</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantized partial differential equations</subfield><subfield code="c">A Prástaro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, NJ</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 485 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 461-471) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028584298</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043160107 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:20Z |
institution | BVB |
isbn | 9789812387646 9789812562517 9812387641 9812562516 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028584298 |
oclc_num | 228114414 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 485 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific |
record_format | marc |
spelling | Prastaro, Agostino Verfasser aut Quantized partial differential equations A Prástaro River Edge, NJ World Scientific c2004 1 Online-Ressource (xiii, 485 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 461-471) and index This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro SCIENCE / Physics / Mathematical & Computational bisacsh Quantum field theory fast Quantum groups fast Quantum groups Quantum field theory Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Prastaro, Agostino Quantized partial differential equations SCIENCE / Physics / Mathematical & Computational bisacsh Quantum field theory fast Quantum groups fast Quantum groups Quantum field theory Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4044779-0 |
title | Quantized partial differential equations |
title_auth | Quantized partial differential equations |
title_exact_search | Quantized partial differential equations |
title_full | Quantized partial differential equations A Prástaro |
title_fullStr | Quantized partial differential equations A Prástaro |
title_full_unstemmed | Quantized partial differential equations A Prástaro |
title_short | Quantized partial differential equations |
title_sort | quantized partial differential equations |
topic | SCIENCE / Physics / Mathematical & Computational bisacsh Quantum field theory fast Quantum groups fast Quantum groups Quantum field theory Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | SCIENCE / Physics / Mathematical & Computational Quantum field theory Quantum groups Partielle Differentialgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130032 |
work_keys_str_mv | AT prastaroagostino quantizedpartialdifferentialequations |