Principles of diffuse light propagation: light propagation in tissues with applications in biology and medicine
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2012
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 321-329) and index 1. Light absorbers, emitters, and scatterers: the origins of color in nature. 1.1. Introduction. 1.2. The classical picture of light interaction with matter. 1.3. Light absorbers in nature. 1.4. Light emitters in nature. 1.5. Light scatterers in nature. 1.6. Optical molecular imaging -- 2. Scattering and absorption. 2.1. Definition of scattering. 2.2. Poynting's theorem and energy conservation. 2.3. Single scattering. 2.4. Main optical parameters of a particle. 2.5. Multiple scattering. 2.6. Extinction by a slab of absorbing particles. 2.7. Polarization effects. 2.8. Self-averaging -- 3. The Radiative Transfer Equation (RTE). 3.1. Radiative transfer. 3.2. Specific intensity, average intensity and flux. 3.3. The detected power. 3.4. Isotropic emission and its detection. 3.5. Reflectivity and transmissivity. 3.6. Derivation of the radiative transfer equation. 3.7. Some similarity relations of the RTE. 3.8. The RTE and Monte Carlo -- - 4. Fick's law and the diffusion approximation. 4.1. Historical background. 4.2. Diffuse light. 4.3. Derivation of the diffusion equation. 4.4. The diffusion equation. 4.5. The mean free path. 4.6. Limits of validity of the diffusion approximation -- 5. The diffusion equation. 5.1. The diffusion equation in infinite homogeneous media. 5.2. Green's functions and Green's Theorem. 5.3. The time-dependent Green's function. 5.4. The constant illumination Green's function. 5.5. Waves of diffuse light. 5.6. The diffusion equation in inhomogeneous media. 5.7. Summary of Green's functions -- 6. Propagation and Spatial Resolution of Diffuse Light. 6.1. Propagation of diffuse light. 6.2. The angular spectrum representation. 6.3. Spatial transfer function and impulse response. 6.4. Spatial resolution. 6.5. Backpropagation of diffuse light -- - 7. The point source approximation. 7.1. General solution. 7.2. Solution for a collimated source. 7.3. Point source approximation to a collimated source. 7.4. Accounting for the source profile -- 8. Diffuse light at interfaces. 8.1. Diffusive/Diffusive (D-D) interfaces. 8.2. Diffusive/Non-diffusive (D-N) interfaces. 8.3. Layered diffusive media. 8.4. Multiple layered media. 8.5. The detected power in diffuse media. 8.6. Non-contact measurements -- 9. Fluorescence and bioluminescence in diffuse media: an ill-posed problem. 9.1. Fluorescence in diffuse media. 9.2. Bioluminescence in diffuse media. 9.3. Why is imaging in diffuse media an ill-posed problem? 9.4. Reducing ill-posedness -- 10. Imaging in diffusive media: the inverse problem. 10.1. The forward and inverse problem. 10.2. The born approximation. 10.3. The Rytov approximation. 10.4. The normalized born approximation and the sensitivity matrix. 10.5. Direct inversion formulas The main idea behind this book is to present a rigorous derivation of the equations that govern light propagation in highly scattering media, with an emphasis on their applications in imaging in biology and medicine. The equations and formulas for diffuse light propagation are derived from the very beginning and all the necessary analytical expressions needed to complete a complex imaging or characterization problem are presented step by step. This book provides postgraduate and PhD students with the basic framework and sufficient knowledge in light transport and the related mathematical methods to solve most complex problems that may appear in biomedical applications involving multiple scattered light. All results presented are formal analytical derivations from the complete problem, presenting, in those cases which are relevant, approximations to these expressions |
Beschreibung: | 1 Online-Ressource (xvii, 336 pages) |
ISBN: | 9789814293761 9789814293860 9814293768 9814293865 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043159503 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 9789814293761 |9 978-981-4293-76-1 | ||
020 | |a 9789814293860 |9 978-981-4293-86-0 | ||
020 | |a 9814293768 |9 981-4293-76-8 | ||
020 | |a 9814293865 |9 981-4293-86-5 | ||
035 | |a (OCoLC)794902975 | ||
035 | |a (DE-599)BVBBV043159503 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 535.3 |2 23 | |
100 | 1 | |a Lorenzo, Jorge Ripoll |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of diffuse light propagation |b light propagation in tissues with applications in biology and medicine |c Jorge Ripoll Lorenzo |
264 | 1 | |a Singapore |b World Scientific |c ©2012 | |
300 | |a 1 Online-Ressource (xvii, 336 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 321-329) and index | ||
500 | |a 1. Light absorbers, emitters, and scatterers: the origins of color in nature. 1.1. Introduction. 1.2. The classical picture of light interaction with matter. 1.3. Light absorbers in nature. 1.4. Light emitters in nature. 1.5. Light scatterers in nature. 1.6. Optical molecular imaging -- 2. Scattering and absorption. 2.1. Definition of scattering. 2.2. Poynting's theorem and energy conservation. 2.3. Single scattering. 2.4. Main optical parameters of a particle. 2.5. Multiple scattering. 2.6. Extinction by a slab of absorbing particles. 2.7. Polarization effects. 2.8. Self-averaging -- 3. The Radiative Transfer Equation (RTE). 3.1. Radiative transfer. 3.2. Specific intensity, average intensity and flux. 3.3. The detected power. 3.4. Isotropic emission and its detection. 3.5. Reflectivity and transmissivity. 3.6. Derivation of the radiative transfer equation. 3.7. Some similarity relations of the RTE. 3.8. The RTE and Monte Carlo -- | ||
500 | |a - 4. Fick's law and the diffusion approximation. 4.1. Historical background. 4.2. Diffuse light. 4.3. Derivation of the diffusion equation. 4.4. The diffusion equation. 4.5. The mean free path. 4.6. Limits of validity of the diffusion approximation -- 5. The diffusion equation. 5.1. The diffusion equation in infinite homogeneous media. 5.2. Green's functions and Green's Theorem. 5.3. The time-dependent Green's function. 5.4. The constant illumination Green's function. 5.5. Waves of diffuse light. 5.6. The diffusion equation in inhomogeneous media. 5.7. Summary of Green's functions -- 6. Propagation and Spatial Resolution of Diffuse Light. 6.1. Propagation of diffuse light. 6.2. The angular spectrum representation. 6.3. Spatial transfer function and impulse response. 6.4. Spatial resolution. 6.5. Backpropagation of diffuse light -- | ||
500 | |a - 7. The point source approximation. 7.1. General solution. 7.2. Solution for a collimated source. 7.3. Point source approximation to a collimated source. 7.4. Accounting for the source profile -- 8. Diffuse light at interfaces. 8.1. Diffusive/Diffusive (D-D) interfaces. 8.2. Diffusive/Non-diffusive (D-N) interfaces. 8.3. Layered diffusive media. 8.4. Multiple layered media. 8.5. The detected power in diffuse media. 8.6. Non-contact measurements -- 9. Fluorescence and bioluminescence in diffuse media: an ill-posed problem. 9.1. Fluorescence in diffuse media. 9.2. Bioluminescence in diffuse media. 9.3. Why is imaging in diffuse media an ill-posed problem? 9.4. Reducing ill-posedness -- 10. Imaging in diffusive media: the inverse problem. 10.1. The forward and inverse problem. 10.2. The born approximation. 10.3. The Rytov approximation. 10.4. The normalized born approximation and the sensitivity matrix. 10.5. Direct inversion formulas | ||
500 | |a The main idea behind this book is to present a rigorous derivation of the equations that govern light propagation in highly scattering media, with an emphasis on their applications in imaging in biology and medicine. The equations and formulas for diffuse light propagation are derived from the very beginning and all the necessary analytical expressions needed to complete a complex imaging or characterization problem are presented step by step. This book provides postgraduate and PhD students with the basic framework and sufficient knowledge in light transport and the related mathematical methods to solve most complex problems that may appear in biomedical applications involving multiple scattered light. All results presented are formal analytical derivations from the complete problem, presenting, in those cases which are relevant, approximations to these expressions | ||
650 | 7 | |a SCIENCE / Physics / Optics & Light |2 bisacsh | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Light |x Transmission |x Mathematical models | |
650 | 4 | |a Tissues |x Optical properties | |
650 | 4 | |a Optical tomography | |
650 | 4 | |a Light |x Scattering |x Mathematical models | |
650 | 0 | 7 | |a Lichtstreuung |0 (DE-588)4167602-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewebe |0 (DE-588)4020840-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lichtstreuung |0 (DE-588)4167602-6 |D s |
689 | 0 | 1 | |a Gewebe |0 (DE-588)4020840-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028583694 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175628333744128 |
---|---|
any_adam_object | |
author | Lorenzo, Jorge Ripoll |
author_facet | Lorenzo, Jorge Ripoll |
author_role | aut |
author_sort | Lorenzo, Jorge Ripoll |
author_variant | j r l jr jrl |
building | Verbundindex |
bvnumber | BV043159503 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)794902975 (DE-599)BVBBV043159503 |
dewey-full | 535.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 535 - Light and related radiation |
dewey-raw | 535.3 |
dewey-search | 535.3 |
dewey-sort | 3535.3 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05855nmm a2200553zc 4500</leader><controlfield tag="001">BV043159503</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814293761</subfield><subfield code="9">978-981-4293-76-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814293860</subfield><subfield code="9">978-981-4293-86-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814293768</subfield><subfield code="9">981-4293-76-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814293865</subfield><subfield code="9">981-4293-86-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794902975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043159503</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lorenzo, Jorge Ripoll</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of diffuse light propagation</subfield><subfield code="b">light propagation in tissues with applications in biology and medicine</subfield><subfield code="c">Jorge Ripoll Lorenzo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 336 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 321-329) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Light absorbers, emitters, and scatterers: the origins of color in nature. 1.1. Introduction. 1.2. The classical picture of light interaction with matter. 1.3. Light absorbers in nature. 1.4. Light emitters in nature. 1.5. Light scatterers in nature. 1.6. Optical molecular imaging -- 2. Scattering and absorption. 2.1. Definition of scattering. 2.2. Poynting's theorem and energy conservation. 2.3. Single scattering. 2.4. Main optical parameters of a particle. 2.5. Multiple scattering. 2.6. Extinction by a slab of absorbing particles. 2.7. Polarization effects. 2.8. Self-averaging -- 3. The Radiative Transfer Equation (RTE). 3.1. Radiative transfer. 3.2. Specific intensity, average intensity and flux. 3.3. The detected power. 3.4. Isotropic emission and its detection. 3.5. Reflectivity and transmissivity. 3.6. Derivation of the radiative transfer equation. 3.7. Some similarity relations of the RTE. 3.8. The RTE and Monte Carlo -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4. Fick's law and the diffusion approximation. 4.1. Historical background. 4.2. Diffuse light. 4.3. Derivation of the diffusion equation. 4.4. The diffusion equation. 4.5. The mean free path. 4.6. Limits of validity of the diffusion approximation -- 5. The diffusion equation. 5.1. The diffusion equation in infinite homogeneous media. 5.2. Green's functions and Green's Theorem. 5.3. The time-dependent Green's function. 5.4. The constant illumination Green's function. 5.5. Waves of diffuse light. 5.6. The diffusion equation in inhomogeneous media. 5.7. Summary of Green's functions -- 6. Propagation and Spatial Resolution of Diffuse Light. 6.1. Propagation of diffuse light. 6.2. The angular spectrum representation. 6.3. Spatial transfer function and impulse response. 6.4. Spatial resolution. 6.5. Backpropagation of diffuse light -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7. The point source approximation. 7.1. General solution. 7.2. Solution for a collimated source. 7.3. Point source approximation to a collimated source. 7.4. Accounting for the source profile -- 8. Diffuse light at interfaces. 8.1. Diffusive/Diffusive (D-D) interfaces. 8.2. Diffusive/Non-diffusive (D-N) interfaces. 8.3. Layered diffusive media. 8.4. Multiple layered media. 8.5. The detected power in diffuse media. 8.6. Non-contact measurements -- 9. Fluorescence and bioluminescence in diffuse media: an ill-posed problem. 9.1. Fluorescence in diffuse media. 9.2. Bioluminescence in diffuse media. 9.3. Why is imaging in diffuse media an ill-posed problem? 9.4. Reducing ill-posedness -- 10. Imaging in diffusive media: the inverse problem. 10.1. The forward and inverse problem. 10.2. The born approximation. 10.3. The Rytov approximation. 10.4. The normalized born approximation and the sensitivity matrix. 10.5. Direct inversion formulas</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The main idea behind this book is to present a rigorous derivation of the equations that govern light propagation in highly scattering media, with an emphasis on their applications in imaging in biology and medicine. The equations and formulas for diffuse light propagation are derived from the very beginning and all the necessary analytical expressions needed to complete a complex imaging or characterization problem are presented step by step. This book provides postgraduate and PhD students with the basic framework and sufficient knowledge in light transport and the related mathematical methods to solve most complex problems that may appear in biomedical applications involving multiple scattered light. All results presented are formal analytical derivations from the complete problem, presenting, in those cases which are relevant, approximations to these expressions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Optics & Light</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light</subfield><subfield code="x">Transmission</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tissues</subfield><subfield code="x">Optical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light</subfield><subfield code="x">Scattering</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtstreuung</subfield><subfield code="0">(DE-588)4167602-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewebe</subfield><subfield code="0">(DE-588)4020840-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lichtstreuung</subfield><subfield code="0">(DE-588)4167602-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gewebe</subfield><subfield code="0">(DE-588)4020840-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028583694</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043159503 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:18Z |
institution | BVB |
isbn | 9789814293761 9789814293860 9814293768 9814293865 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028583694 |
oclc_num | 794902975 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xvii, 336 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific |
record_format | marc |
spelling | Lorenzo, Jorge Ripoll Verfasser aut Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine Jorge Ripoll Lorenzo Singapore World Scientific ©2012 1 Online-Ressource (xvii, 336 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 321-329) and index 1. Light absorbers, emitters, and scatterers: the origins of color in nature. 1.1. Introduction. 1.2. The classical picture of light interaction with matter. 1.3. Light absorbers in nature. 1.4. Light emitters in nature. 1.5. Light scatterers in nature. 1.6. Optical molecular imaging -- 2. Scattering and absorption. 2.1. Definition of scattering. 2.2. Poynting's theorem and energy conservation. 2.3. Single scattering. 2.4. Main optical parameters of a particle. 2.5. Multiple scattering. 2.6. Extinction by a slab of absorbing particles. 2.7. Polarization effects. 2.8. Self-averaging -- 3. The Radiative Transfer Equation (RTE). 3.1. Radiative transfer. 3.2. Specific intensity, average intensity and flux. 3.3. The detected power. 3.4. Isotropic emission and its detection. 3.5. Reflectivity and transmissivity. 3.6. Derivation of the radiative transfer equation. 3.7. Some similarity relations of the RTE. 3.8. The RTE and Monte Carlo -- - 4. Fick's law and the diffusion approximation. 4.1. Historical background. 4.2. Diffuse light. 4.3. Derivation of the diffusion equation. 4.4. The diffusion equation. 4.5. The mean free path. 4.6. Limits of validity of the diffusion approximation -- 5. The diffusion equation. 5.1. The diffusion equation in infinite homogeneous media. 5.2. Green's functions and Green's Theorem. 5.3. The time-dependent Green's function. 5.4. The constant illumination Green's function. 5.5. Waves of diffuse light. 5.6. The diffusion equation in inhomogeneous media. 5.7. Summary of Green's functions -- 6. Propagation and Spatial Resolution of Diffuse Light. 6.1. Propagation of diffuse light. 6.2. The angular spectrum representation. 6.3. Spatial transfer function and impulse response. 6.4. Spatial resolution. 6.5. Backpropagation of diffuse light -- - 7. The point source approximation. 7.1. General solution. 7.2. Solution for a collimated source. 7.3. Point source approximation to a collimated source. 7.4. Accounting for the source profile -- 8. Diffuse light at interfaces. 8.1. Diffusive/Diffusive (D-D) interfaces. 8.2. Diffusive/Non-diffusive (D-N) interfaces. 8.3. Layered diffusive media. 8.4. Multiple layered media. 8.5. The detected power in diffuse media. 8.6. Non-contact measurements -- 9. Fluorescence and bioluminescence in diffuse media: an ill-posed problem. 9.1. Fluorescence in diffuse media. 9.2. Bioluminescence in diffuse media. 9.3. Why is imaging in diffuse media an ill-posed problem? 9.4. Reducing ill-posedness -- 10. Imaging in diffusive media: the inverse problem. 10.1. The forward and inverse problem. 10.2. The born approximation. 10.3. The Rytov approximation. 10.4. The normalized born approximation and the sensitivity matrix. 10.5. Direct inversion formulas The main idea behind this book is to present a rigorous derivation of the equations that govern light propagation in highly scattering media, with an emphasis on their applications in imaging in biology and medicine. The equations and formulas for diffuse light propagation are derived from the very beginning and all the necessary analytical expressions needed to complete a complex imaging or characterization problem are presented step by step. This book provides postgraduate and PhD students with the basic framework and sufficient knowledge in light transport and the related mathematical methods to solve most complex problems that may appear in biomedical applications involving multiple scattered light. All results presented are formal analytical derivations from the complete problem, presenting, in those cases which are relevant, approximations to these expressions SCIENCE / Physics / Optics & Light bisacsh Mathematisches Modell Light Transmission Mathematical models Tissues Optical properties Optical tomography Light Scattering Mathematical models Lichtstreuung (DE-588)4167602-6 gnd rswk-swf Gewebe (DE-588)4020840-0 gnd rswk-swf Lichtstreuung (DE-588)4167602-6 s Gewebe (DE-588)4020840-0 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lorenzo, Jorge Ripoll Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine SCIENCE / Physics / Optics & Light bisacsh Mathematisches Modell Light Transmission Mathematical models Tissues Optical properties Optical tomography Light Scattering Mathematical models Lichtstreuung (DE-588)4167602-6 gnd Gewebe (DE-588)4020840-0 gnd |
subject_GND | (DE-588)4167602-6 (DE-588)4020840-0 |
title | Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine |
title_auth | Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine |
title_exact_search | Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine |
title_full | Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine Jorge Ripoll Lorenzo |
title_fullStr | Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine Jorge Ripoll Lorenzo |
title_full_unstemmed | Principles of diffuse light propagation light propagation in tissues with applications in biology and medicine Jorge Ripoll Lorenzo |
title_short | Principles of diffuse light propagation |
title_sort | principles of diffuse light propagation light propagation in tissues with applications in biology and medicine |
title_sub | light propagation in tissues with applications in biology and medicine |
topic | SCIENCE / Physics / Optics & Light bisacsh Mathematisches Modell Light Transmission Mathematical models Tissues Optical properties Optical tomography Light Scattering Mathematical models Lichtstreuung (DE-588)4167602-6 gnd Gewebe (DE-588)4020840-0 gnd |
topic_facet | SCIENCE / Physics / Optics & Light Mathematisches Modell Light Transmission Mathematical models Tissues Optical properties Optical tomography Light Scattering Mathematical models Lichtstreuung Gewebe |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457234 |
work_keys_str_mv | AT lorenzojorgeripoll principlesofdiffuselightpropagationlightpropagationintissueswithapplicationsinbiologyandmedicine |