Finite volume methods for hyperbolic problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge texts in applied mathematics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 535-552) and index Conservation laws and differential equations -- Characteristics and Riemann problems for linear hyperbolic equations -- Finite-volume methods -- Introduction to the CLAWPACK software -- High resolution methods -- Boundary conditions and ghost cells -- Convergence, accuracy, and stability -- Variable-coefficient linear equations -- Other approaches to high resolution -- Nonlinear scalar conservation laws -- Finite-volume methods for nonlinear scalar conservation laws -- Nonlinear systems of conservation laws -- Gas dynamics and the Euler equations -- Finite-volume methods for nonlinear systems -- Some nonclassical hyperbolic problems -- Source terms and balance laws -- Multidimensional hyperbolic problems -- Multidimensional numerical methods -- Multidimensional scalar equations -- Multidimensional systems -- Elastic waves -- Finite-volume methods on quadrilateral grids This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods |
Beschreibung: | 1 Online-Ressource (xix, 558 pages) |
ISBN: | 0511042191 0511791259 0521009243 0521810876 9780511042195 9780511791253 9780521009249 9780521810876 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043159184 | ||
003 | DE-604 | ||
005 | 20190307 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 0511042191 |9 0-511-04219-1 | ||
020 | |a 0511791259 |9 0-511-79125-9 | ||
020 | |a 0521009243 |9 0-521-00924-3 | ||
020 | |a 0521810876 |9 0-521-81087-6 | ||
020 | |a 0521810876 |9 0-521-81087-6 | ||
020 | |a 9780511042195 |9 978-0-511-04219-5 | ||
020 | |a 9780511791253 |9 978-0-511-79125-3 | ||
020 | |a 9780521009249 |9 978-0-521-00924-9 | ||
020 | |a 9780521810876 |9 978-0-521-81087-6 | ||
020 | |a 9780521810876 |9 978-0-521-81087-6 | ||
035 | |a (OCoLC)56124576 | ||
035 | |a (DE-599)BVBBV043159184 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.353 |2 22 | |
100 | 1 | |a LeVeque, Randall J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite volume methods for hyperbolic problems |c Randall J. LeVeque |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 Online-Ressource (xix, 558 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics | |
500 | |a Includes bibliographical references (pages 535-552) and index | ||
500 | |a Conservation laws and differential equations -- Characteristics and Riemann problems for linear hyperbolic equations -- Finite-volume methods -- Introduction to the CLAWPACK software -- High resolution methods -- Boundary conditions and ghost cells -- Convergence, accuracy, and stability -- Variable-coefficient linear equations -- Other approaches to high resolution -- Nonlinear scalar conservation laws -- Finite-volume methods for nonlinear scalar conservation laws -- Nonlinear systems of conservation laws -- Gas dynamics and the Euler equations -- Finite-volume methods for nonlinear systems -- Some nonclassical hyperbolic problems -- Source terms and balance laws -- Multidimensional hyperbolic problems -- Multidimensional numerical methods -- Multidimensional scalar equations -- Multidimensional systems -- Elastic waves -- Finite-volume methods on quadrilateral grids | ||
500 | |a This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods | ||
650 | 4 | |a Differential equations, Hyperbolic / Numerical solutions | |
650 | 4 | |a Finite volume method | |
650 | 4 | |a Conservation laws (Mathematics) | |
650 | 4 | |a Équations différentielles hyperboliques / Solutions numériques | |
650 | 4 | |a Volumes finis, Méthodes de | |
650 | 4 | |a Lois de conservation (Mathématiques) | |
650 | 7 | |a MATHEMATICS / Differential Equations / Partial |2 bisacsh | |
650 | 7 | |a Conservation laws (Mathematics) |2 fast | |
650 | 7 | |a Differential equations, Hyperbolic / Numerical solutions |2 fast | |
650 | 7 | |a Finite volume method |2 fast | |
650 | 7 | |a Hyperbolische Differentialgleichung |2 swd | |
650 | 7 | |a Finite-Volumen-Methode |2 swd | |
650 | 7 | |a Erhaltungssatz |2 swd | |
650 | 4 | |a Differential equations, Hyperbolic |x Numerical solutions | |
650 | 4 | |a Finite volume method | |
650 | 4 | |a Conservation laws (Mathematics) | |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Volumen-Methode |0 (DE-588)4220855-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 0 | 1 | |a Finite-Volumen-Methode |0 (DE-588)4220855-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028583375 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175627693064192 |
---|---|
any_adam_object | |
author | LeVeque, Randall J. |
author_facet | LeVeque, Randall J. |
author_role | aut |
author_sort | LeVeque, Randall J. |
author_variant | r j l rj rjl |
building | Verbundindex |
bvnumber | BV043159184 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)56124576 (DE-599)BVBBV043159184 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05588nmm a2200805zc 4500</leader><controlfield tag="001">BV043159184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511042191</subfield><subfield code="9">0-511-04219-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511791259</subfield><subfield code="9">0-511-79125-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521009243</subfield><subfield code="9">0-521-00924-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521810876</subfield><subfield code="9">0-521-81087-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521810876</subfield><subfield code="9">0-521-81087-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511042195</subfield><subfield code="9">978-0-511-04219-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511791253</subfield><subfield code="9">978-0-511-79125-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521009249</subfield><subfield code="9">978-0-521-00924-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521810876</subfield><subfield code="9">978-0-521-81087-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521810876</subfield><subfield code="9">978-0-521-81087-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56124576</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043159184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">LeVeque, Randall J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite volume methods for hyperbolic problems</subfield><subfield code="c">Randall J. LeVeque</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 558 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 535-552) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Conservation laws and differential equations -- Characteristics and Riemann problems for linear hyperbolic equations -- Finite-volume methods -- Introduction to the CLAWPACK software -- High resolution methods -- Boundary conditions and ghost cells -- Convergence, accuracy, and stability -- Variable-coefficient linear equations -- Other approaches to high resolution -- Nonlinear scalar conservation laws -- Finite-volume methods for nonlinear scalar conservation laws -- Nonlinear systems of conservation laws -- Gas dynamics and the Euler equations -- Finite-volume methods for nonlinear systems -- Some nonclassical hyperbolic problems -- Source terms and balance laws -- Multidimensional hyperbolic problems -- Multidimensional numerical methods -- Multidimensional scalar equations -- Multidimensional systems -- Elastic waves -- Finite-volume methods on quadrilateral grids</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite volume method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation laws (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles hyperboliques / Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volumes finis, Méthodes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lois de conservation (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / Partial</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conservation laws (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Hyperbolic / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite volume method</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite-Volumen-Methode</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite volume method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation laws (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Volumen-Methode</subfield><subfield code="0">(DE-588)4220855-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finite-Volumen-Methode</subfield><subfield code="0">(DE-588)4220855-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028583375</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043159184 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:18Z |
institution | BVB |
isbn | 0511042191 0511791259 0521009243 0521810876 9780511042195 9780511791253 9780521009249 9780521810876 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028583375 |
oclc_num | 56124576 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xix, 558 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | LeVeque, Randall J. Verfasser aut Finite volume methods for hyperbolic problems Randall J. LeVeque Cambridge Cambridge University Press 2002 1 Online-Ressource (xix, 558 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics Includes bibliographical references (pages 535-552) and index Conservation laws and differential equations -- Characteristics and Riemann problems for linear hyperbolic equations -- Finite-volume methods -- Introduction to the CLAWPACK software -- High resolution methods -- Boundary conditions and ghost cells -- Convergence, accuracy, and stability -- Variable-coefficient linear equations -- Other approaches to high resolution -- Nonlinear scalar conservation laws -- Finite-volume methods for nonlinear scalar conservation laws -- Nonlinear systems of conservation laws -- Gas dynamics and the Euler equations -- Finite-volume methods for nonlinear systems -- Some nonclassical hyperbolic problems -- Source terms and balance laws -- Multidimensional hyperbolic problems -- Multidimensional numerical methods -- Multidimensional scalar equations -- Multidimensional systems -- Elastic waves -- Finite-volume methods on quadrilateral grids This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods Differential equations, Hyperbolic / Numerical solutions Finite volume method Conservation laws (Mathematics) Équations différentielles hyperboliques / Solutions numériques Volumes finis, Méthodes de Lois de conservation (Mathématiques) MATHEMATICS / Differential Equations / Partial bisacsh Conservation laws (Mathematics) fast Differential equations, Hyperbolic / Numerical solutions fast Finite volume method fast Hyperbolische Differentialgleichung swd Finite-Volumen-Methode swd Erhaltungssatz swd Differential equations, Hyperbolic Numerical solutions Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Finite-Volumen-Methode (DE-588)4220855-5 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 s Finite-Volumen-Methode (DE-588)4220855-5 s 1\p DE-604 Hyperbolische Differentialgleichung (DE-588)4131213-2 s Numerisches Verfahren (DE-588)4128130-5 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | LeVeque, Randall J. Finite volume methods for hyperbolic problems Differential equations, Hyperbolic / Numerical solutions Finite volume method Conservation laws (Mathematics) Équations différentielles hyperboliques / Solutions numériques Volumes finis, Méthodes de Lois de conservation (Mathématiques) MATHEMATICS / Differential Equations / Partial bisacsh Conservation laws (Mathematics) fast Differential equations, Hyperbolic / Numerical solutions fast Finite volume method fast Hyperbolische Differentialgleichung swd Finite-Volumen-Methode swd Erhaltungssatz swd Differential equations, Hyperbolic Numerical solutions Hyperbolisches System (DE-588)4191897-6 gnd Finite-Volumen-Methode (DE-588)4220855-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
subject_GND | (DE-588)4191897-6 (DE-588)4220855-5 (DE-588)4128130-5 (DE-588)4131213-2 |
title | Finite volume methods for hyperbolic problems |
title_auth | Finite volume methods for hyperbolic problems |
title_exact_search | Finite volume methods for hyperbolic problems |
title_full | Finite volume methods for hyperbolic problems Randall J. LeVeque |
title_fullStr | Finite volume methods for hyperbolic problems Randall J. LeVeque |
title_full_unstemmed | Finite volume methods for hyperbolic problems Randall J. LeVeque |
title_short | Finite volume methods for hyperbolic problems |
title_sort | finite volume methods for hyperbolic problems |
topic | Differential equations, Hyperbolic / Numerical solutions Finite volume method Conservation laws (Mathematics) Équations différentielles hyperboliques / Solutions numériques Volumes finis, Méthodes de Lois de conservation (Mathématiques) MATHEMATICS / Differential Equations / Partial bisacsh Conservation laws (Mathematics) fast Differential equations, Hyperbolic / Numerical solutions fast Finite volume method fast Hyperbolische Differentialgleichung swd Finite-Volumen-Methode swd Erhaltungssatz swd Differential equations, Hyperbolic Numerical solutions Hyperbolisches System (DE-588)4191897-6 gnd Finite-Volumen-Methode (DE-588)4220855-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
topic_facet | Differential equations, Hyperbolic / Numerical solutions Finite volume method Conservation laws (Mathematics) Équations différentielles hyperboliques / Solutions numériques Volumes finis, Méthodes de Lois de conservation (Mathématiques) MATHEMATICS / Differential Equations / Partial Hyperbolische Differentialgleichung Finite-Volumen-Methode Erhaltungssatz Differential equations, Hyperbolic Numerical solutions Hyperbolisches System Numerisches Verfahren |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=112638 |
work_keys_str_mv | AT levequerandallj finitevolumemethodsforhyperbolicproblems |