Introduction to 2-spinors in general relativity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2003
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 181-184) and index 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter |
Beschreibung: | 1 Online-Ressource (xii, 191 pages) |
ISBN: | 1281935727 9781281935724 9789812383075 9789812795311 9812383077 9812795316 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043158875 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2003 |||| o||u| ||||||eng d | ||
020 | |a 1281935727 |9 1-281-93572-7 | ||
020 | |a 9781281935724 |9 978-1-281-93572-4 | ||
020 | |a 9789812383075 |9 978-981-238-307-5 | ||
020 | |a 9789812795311 |c electronic bk. |9 978-981-279-531-1 | ||
020 | |a 9812383077 |9 981-238-307-7 | ||
020 | |a 9812795316 |c electronic bk. |9 981-279-531-6 | ||
035 | |a (OCoLC)263148406 | ||
035 | |a (DE-599)BVBBV043158875 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.15/563 |2 22 | |
100 | 1 | |a O'Donnell, Peter J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to 2-spinors in general relativity |c Peter O'Donnell |
246 | 1 | 3 | |a 2-spinors in general relativity |
264 | 1 | |a Singapore |b World Scientific |c ©2003 | |
300 | |a 1 Online-Ressource (xii, 191 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 181-184) and index | ||
500 | |a 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises | ||
500 | |a This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter | ||
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
650 | 7 | |a General relativity (Physics) |2 fast | |
650 | 7 | |a Spinor analysis |2 fast | |
650 | 7 | |a Relatividade (física) |2 larpcal | |
650 | 4 | |a Spinor analysis | |
650 | 4 | |a General relativity (Physics) | |
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spinoranalysis |0 (DE-588)4182329-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spinoranalysis |0 (DE-588)4182329-1 |D s |
689 | 0 | 1 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028583066 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175627051335680 |
---|---|
any_adam_object | |
author | O'Donnell, Peter J. |
author_facet | O'Donnell, Peter J. |
author_role | aut |
author_sort | O'Donnell, Peter J. |
author_variant | p j o pj pjo |
building | Verbundindex |
bvnumber | BV043158875 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)263148406 (DE-599)BVBBV043158875 |
dewey-full | 530.15/563 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/563 |
dewey-search | 530.15/563 |
dewey-sort | 3530.15 3563 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04635nmm a2200565zc 4500</leader><controlfield tag="001">BV043158875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281935727</subfield><subfield code="9">1-281-93572-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281935724</subfield><subfield code="9">978-1-281-93572-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812383075</subfield><subfield code="9">978-981-238-307-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795311</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-531-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812383077</subfield><subfield code="9">981-238-307-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812795316</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-279-531-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263148406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043158875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/563</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Donnell, Peter J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to 2-spinors in general relativity</subfield><subfield code="c">Peter O'Donnell</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">2-spinors in general relativity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 191 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 181-184) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">General relativity (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spinor analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relatividade (física)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spinor analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General relativity (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spinoranalysis</subfield><subfield code="0">(DE-588)4182329-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spinoranalysis</subfield><subfield code="0">(DE-588)4182329-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028583066</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043158875 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:17Z |
institution | BVB |
isbn | 1281935727 9781281935724 9789812383075 9789812795311 9812383077 9812795316 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028583066 |
oclc_num | 263148406 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 191 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific |
record_format | marc |
spelling | O'Donnell, Peter J. Verfasser aut Introduction to 2-spinors in general relativity Peter O'Donnell 2-spinors in general relativity Singapore World Scientific ©2003 1 Online-Ressource (xii, 191 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 181-184) and index 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter SCIENCE / Physics / Mathematical & Computational bisacsh General relativity (Physics) fast Spinor analysis fast Relatividade (física) larpcal Spinor analysis General relativity (Physics) Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf Spinoranalysis (DE-588)4182329-1 gnd rswk-swf Spinoranalysis (DE-588)4182329-1 s Allgemeine Relativitätstheorie (DE-588)4112491-1 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | O'Donnell, Peter J. Introduction to 2-spinors in general relativity SCIENCE / Physics / Mathematical & Computational bisacsh General relativity (Physics) fast Spinor analysis fast Relatividade (física) larpcal Spinor analysis General relativity (Physics) Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Spinoranalysis (DE-588)4182329-1 gnd |
subject_GND | (DE-588)4112491-1 (DE-588)4182329-1 |
title | Introduction to 2-spinors in general relativity |
title_alt | 2-spinors in general relativity |
title_auth | Introduction to 2-spinors in general relativity |
title_exact_search | Introduction to 2-spinors in general relativity |
title_full | Introduction to 2-spinors in general relativity Peter O'Donnell |
title_fullStr | Introduction to 2-spinors in general relativity Peter O'Donnell |
title_full_unstemmed | Introduction to 2-spinors in general relativity Peter O'Donnell |
title_short | Introduction to 2-spinors in general relativity |
title_sort | introduction to 2 spinors in general relativity |
topic | SCIENCE / Physics / Mathematical & Computational bisacsh General relativity (Physics) fast Spinor analysis fast Relatividade (física) larpcal Spinor analysis General relativity (Physics) Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Spinoranalysis (DE-588)4182329-1 gnd |
topic_facet | SCIENCE / Physics / Mathematical & Computational General relativity (Physics) Spinor analysis Relatividade (física) Allgemeine Relativitätstheorie Spinoranalysis |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235635 |
work_keys_str_mv | AT odonnellpeterj introductionto2spinorsingeneralrelativity AT odonnellpeterj 2spinorsingeneralrelativity |