Solitons, instantons, and twistors:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2010
|
Schriftenreihe: | Oxford mathematics
Oxford graduate texts in mathematics 19 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan |
Beschreibung: | 1 Online-Ressource (xi, 359 pages) |
ISBN: | 0191574104 9780191574108 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043158350 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 0191574104 |c electronic bk. |9 0-19-157410-4 | ||
020 | |a 9780191574108 |c electronic bk. |9 978-0-19-157410-8 | ||
035 | |a (OCoLC)507435856 | ||
035 | |a (DE-599)BVBBV043158350 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.12/4 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Dunajski, Maciej |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solitons, instantons, and twistors |c Maciej Dunajski |
264 | 1 | |a Oxford |b Oxford University Press |c 2010 | |
300 | |a 1 Online-Ressource (xi, 359 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Oxford mathematics | |
490 | 0 | |a Oxford graduate texts in mathematics |v 19 | |
500 | |a Includes bibliographical references and index | ||
500 | |a Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs | ||
500 | |a Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan | ||
650 | 7 | |a SCIENCE / Waves & Wave Mechanics |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Solitons |x Mathematics | |
650 | 4 | |a Instantons |x Mathematics | |
650 | 4 | |a Wave-motion, Theory of | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Twistor theory | |
650 | 0 | 7 | |a Eichtheorie |0 (DE-588)4122125-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konforme Struktur |0 (DE-588)4500911-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Twistor |0 (DE-588)4186504-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Instanton |0 (DE-588)4161874-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 0 | 1 | |a Instanton |0 (DE-588)4161874-9 |D s |
689 | 0 | 2 | |a Twistor |0 (DE-588)4186504-2 |D s |
689 | 0 | 3 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 0 | 4 | |a Konforme Struktur |0 (DE-588)4500911-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-19-857062-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0-19-857063-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-19-857062-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-19-857063-9 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028582541 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175625981788160 |
---|---|
any_adam_object | |
author | Dunajski, Maciej |
author_facet | Dunajski, Maciej |
author_role | aut |
author_sort | Dunajski, Maciej |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV043158350 |
classification_rvk | SK 370 SK 520 SK 540 SK 950 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)507435856 (DE-599)BVBBV043158350 |
dewey-full | 530.12/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12/4 |
dewey-search | 530.12/4 |
dewey-sort | 3530.12 14 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04068nmm a2200709zcb4500</leader><controlfield tag="001">BV043158350</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191574104</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-19-157410-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191574108</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-19-157410-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)507435856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043158350</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunajski, Maciej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitons, instantons, and twistors</subfield><subfield code="c">Maciej Dunajski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 359 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford graduate texts in mathematics</subfield><subfield code="v">19</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Waves & Wave Mechanics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solitons</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instantons</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave-motion, Theory of</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twistor theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Struktur</subfield><subfield code="0">(DE-588)4500911-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Instanton</subfield><subfield code="0">(DE-588)4161874-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Instanton</subfield><subfield code="0">(DE-588)4161874-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Konforme Struktur</subfield><subfield code="0">(DE-588)4500911-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-19-857062-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0-19-857063-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-19-857062-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-19-857063-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028582541</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043158350 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:16Z |
institution | BVB |
isbn | 0191574104 9780191574108 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028582541 |
oclc_num | 507435856 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 359 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Oxford University Press |
record_format | marc |
series2 | Oxford mathematics Oxford graduate texts in mathematics |
spelling | Dunajski, Maciej Verfasser aut Solitons, instantons, and twistors Maciej Dunajski Oxford Oxford University Press 2010 1 Online-Ressource (xi, 359 pages) txt rdacontent c rdamedia cr rdacarrier Oxford mathematics Oxford graduate texts in mathematics 19 Includes bibliographical references and index Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan SCIENCE / Waves & Wave Mechanics bisacsh Mathematik Solitons Mathematics Instantons Mathematics Wave-motion, Theory of Geometry, Differential Twistor theory Eichtheorie (DE-588)4122125-4 gnd rswk-swf Konforme Struktur (DE-588)4500911-9 gnd rswk-swf Soliton (DE-588)4135213-0 gnd rswk-swf Twistor (DE-588)4186504-2 gnd rswk-swf Instanton (DE-588)4161874-9 gnd rswk-swf Soliton (DE-588)4135213-0 s Instanton (DE-588)4161874-9 s Twistor (DE-588)4186504-2 s Eichtheorie (DE-588)4122125-4 s Konforme Struktur (DE-588)4500911-9 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 0-19-857062-7 Erscheint auch als Druck-Ausgabe, Paperback 0-19-857063-5 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-19-857062-2 Erscheint auch als Druck-Ausgabe, Paperback 978-0-19-857063-9 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dunajski, Maciej Solitons, instantons, and twistors SCIENCE / Waves & Wave Mechanics bisacsh Mathematik Solitons Mathematics Instantons Mathematics Wave-motion, Theory of Geometry, Differential Twistor theory Eichtheorie (DE-588)4122125-4 gnd Konforme Struktur (DE-588)4500911-9 gnd Soliton (DE-588)4135213-0 gnd Twistor (DE-588)4186504-2 gnd Instanton (DE-588)4161874-9 gnd |
subject_GND | (DE-588)4122125-4 (DE-588)4500911-9 (DE-588)4135213-0 (DE-588)4186504-2 (DE-588)4161874-9 |
title | Solitons, instantons, and twistors |
title_auth | Solitons, instantons, and twistors |
title_exact_search | Solitons, instantons, and twistors |
title_full | Solitons, instantons, and twistors Maciej Dunajski |
title_fullStr | Solitons, instantons, and twistors Maciej Dunajski |
title_full_unstemmed | Solitons, instantons, and twistors Maciej Dunajski |
title_short | Solitons, instantons, and twistors |
title_sort | solitons instantons and twistors |
topic | SCIENCE / Waves & Wave Mechanics bisacsh Mathematik Solitons Mathematics Instantons Mathematics Wave-motion, Theory of Geometry, Differential Twistor theory Eichtheorie (DE-588)4122125-4 gnd Konforme Struktur (DE-588)4500911-9 gnd Soliton (DE-588)4135213-0 gnd Twistor (DE-588)4186504-2 gnd Instanton (DE-588)4161874-9 gnd |
topic_facet | SCIENCE / Waves & Wave Mechanics Mathematik Solitons Mathematics Instantons Mathematics Wave-motion, Theory of Geometry, Differential Twistor theory Eichtheorie Konforme Struktur Soliton Twistor Instanton |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=302392 |
work_keys_str_mv | AT dunajskimaciej solitonsinstantonsandtwistors |