Information theory and the central limit theorem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
©2004
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 199-206) and index Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems |
Beschreibung: | 1 Online-Ressource (xiv, 209 pages) |
ISBN: | 1860944736 1860945376 9781860944734 9781860945373 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043158287 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||eng d | ||
020 | |a 1860944736 |9 1-86094-473-6 | ||
020 | |a 1860945376 |9 1-86094-537-6 | ||
020 | |a 9781860944734 |9 978-1-86094-473-4 | ||
020 | |a 9781860945373 |9 978-1-86094-537-3 | ||
035 | |a (OCoLC)60410400 | ||
035 | |a (DE-599)BVBBV043158287 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.2 |2 22 | |
100 | 1 | |a Johnson, Oliver, (Oliver Thomas) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Information theory and the central limit theorem |c Oliver Johnson |
264 | 1 | |a London |b Imperial College Press |c ©2004 | |
300 | |a 1 Online-Ressource (xiv, 209 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 199-206) and index | ||
500 | |a Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index | ||
500 | |a This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems | ||
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Central limit theorem |2 fast | |
650 | 7 | |a Information theory / Statistical methods |2 fast | |
650 | 7 | |a Probabilities |2 fast | |
650 | 4 | |a Central limit theorem | |
650 | 4 | |a Information theory |x Statistical methods | |
650 | 4 | |a Probabilities | |
650 | 0 | 7 | |a Zufallsvariable |0 (DE-588)4129514-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informationstheorie |0 (DE-588)4026927-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufallsvektor |0 (DE-588)4191098-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zufallsvariable |0 (DE-588)4129514-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Informationstheorie |0 (DE-588)4026927-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Zufallsvektor |0 (DE-588)4191098-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028582478 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175625868541952 |
---|---|
any_adam_object | |
author | Johnson, Oliver, (Oliver Thomas) |
author_facet | Johnson, Oliver, (Oliver Thomas) |
author_role | aut |
author_sort | Johnson, Oliver, (Oliver Thomas) |
author_variant | o o t j oot ootj |
building | Verbundindex |
bvnumber | BV043158287 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)60410400 (DE-599)BVBBV043158287 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03632nmm a2200613zc 4500</leader><controlfield tag="001">BV043158287</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860944736</subfield><subfield code="9">1-86094-473-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860945376</subfield><subfield code="9">1-86094-537-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860944734</subfield><subfield code="9">978-1-86094-473-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860945373</subfield><subfield code="9">978-1-86094-537-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60410400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043158287</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Oliver, (Oliver Thomas)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Information theory and the central limit theorem</subfield><subfield code="c">Oliver Johnson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">©2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 209 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 199-206) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Central limit theorem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information theory / Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central limit theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvektor</subfield><subfield code="0">(DE-588)4191098-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zufallsvektor</subfield><subfield code="0">(DE-588)4191098-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028582478</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043158287 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:16Z |
institution | BVB |
isbn | 1860944736 1860945376 9781860944734 9781860945373 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028582478 |
oclc_num | 60410400 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 209 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Imperial College Press |
record_format | marc |
spelling | Johnson, Oliver, (Oliver Thomas) Verfasser aut Information theory and the central limit theorem Oliver Johnson London Imperial College Press ©2004 1 Online-Ressource (xiv, 209 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 199-206) and index Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems MATHEMATICS / Probability & Statistics / General bisacsh Central limit theorem fast Information theory / Statistical methods fast Probabilities fast Central limit theorem Information theory Statistical methods Probabilities Zufallsvariable (DE-588)4129514-6 gnd rswk-swf Informationstheorie (DE-588)4026927-9 gnd rswk-swf Zufallsvektor (DE-588)4191098-9 gnd rswk-swf Zufallsvariable (DE-588)4129514-6 s 1\p DE-604 Informationstheorie (DE-588)4026927-9 s 2\p DE-604 Zufallsvektor (DE-588)4191098-9 s 3\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Johnson, Oliver, (Oliver Thomas) Information theory and the central limit theorem MATHEMATICS / Probability & Statistics / General bisacsh Central limit theorem fast Information theory / Statistical methods fast Probabilities fast Central limit theorem Information theory Statistical methods Probabilities Zufallsvariable (DE-588)4129514-6 gnd Informationstheorie (DE-588)4026927-9 gnd Zufallsvektor (DE-588)4191098-9 gnd |
subject_GND | (DE-588)4129514-6 (DE-588)4026927-9 (DE-588)4191098-9 |
title | Information theory and the central limit theorem |
title_auth | Information theory and the central limit theorem |
title_exact_search | Information theory and the central limit theorem |
title_full | Information theory and the central limit theorem Oliver Johnson |
title_fullStr | Information theory and the central limit theorem Oliver Johnson |
title_full_unstemmed | Information theory and the central limit theorem Oliver Johnson |
title_short | Information theory and the central limit theorem |
title_sort | information theory and the central limit theorem |
topic | MATHEMATICS / Probability & Statistics / General bisacsh Central limit theorem fast Information theory / Statistical methods fast Probabilities fast Central limit theorem Information theory Statistical methods Probabilities Zufallsvariable (DE-588)4129514-6 gnd Informationstheorie (DE-588)4026927-9 gnd Zufallsvektor (DE-588)4191098-9 gnd |
topic_facet | MATHEMATICS / Probability & Statistics / General Central limit theorem Information theory / Statistical methods Probabilities Information theory Statistical methods Zufallsvariable Informationstheorie Zufallsvektor |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130010 |
work_keys_str_mv | AT johnsonoliveroliverthomas informationtheoryandthecentrallimittheorem |