Chaotic synchronization: applications to living systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2002
|
Schriftenreihe: | World Scientific series on nonlinear science
v. 42 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index 1. Coupled nonlinear oscillators. 1.1. The role of synchronization. 1.2. Synchronization measures. 1.3. Mode-locking of endogenous economic cycles -- 2. Transverse stability of coupled maps. 2.1. Riddling, bubbling, and on-off intermittency. 2.2. Weak stability of the synchronized chaotic state. 2.3. Formation of riddled basins of attraction. 2.4. Destabilization of low-periodic orbits. 2.5. Different riddling scenarios. 2.6. Intermingled basins of attraction. 2.7. Partial synchronization for three coupled maps -- 3. Unfolding the riddling bifurcation. 3.1. Locally and globally riddled basins of attraction. 3.2. Conditions for soft and hard riddling. 3.3. Example of a soft riddling bifurcation. 3.4. Example of a hard riddling bifurcation. 3.5. Destabilization scenario for a = a[symbol]. 3.6. Coupled intermittency-III maps. 3.7. The contact bifurcation. 3.8. Conclusions -- - 4. Time-continuous systems. 4.1. Two coupled Rossler oscillators. 4.2. Transverse destabilization of low-periodic orbits. 4.3. Riddled basins. 4.4. Bifurcation scenarios for asynchronous cycles. 4.5. The role of a small parameter mismatch. 4.6. Influence of asymmetries in the coupled system. 4.7. Transverse stability of the equilibrium point. 4.8. Partial synchronization of coupled oscillators. 4.9. Clustering in a system of four coupled oscillators. 4.10. Arrays of coupled Rossler oscillators -- 5. Coupled pancreatic cells. 5.1. The insulin producing beta-cells. 5.2. The bursting cell model. 5.3. Bifurcation diagrams for the cell model. 5.4. Coupled chaotically spiking cells. 5.5. Locally riddled basins of attraction. 5.6. Globally riddled basins of attraction. 5.7. Effects of cell inhomogeneities -- - 6. Chaotic phase synchronization. 6.1. Signatures of phase synchronization. 6.2. Bifurcational analysis. 6.3. Role of multistability. 6.4. Mapping approach to multistability. 6.5. Suppression of the natural dynamics. 6.6. Chaotic hierarchy in high dimensions. 6.7. A route to high-order chaos -- 7. Population dynamic systems. 7.1. A system of cascaded microbiological reactors. 7.2. The microbiological oscillator. 7.3. Nonautonomous single-pool system. 7.4. Cascaded two-pool system. 7.5. Homoclinic synchronization mechanism. 7.6. One-dimensional array of population pools. 7.7. Conclusions -- - 8. Clustering of globally coupled maps. 8.1. Ensembles of coupled chaotic oscillators. 8.2. The transcritical riddling bifurcation. 8.3. Global dynamics after a transcritical riddling. 8.4. Riddling and blowout scenarios. 8.5. Influence of a parameter mismatch. 8.6. Stability of K-cluster states. 8.7. Desynchronization of the coherent chaotic state. 8.8. Formation of nearly symmetric clusters. 8.9. Transverse stability of chaotic clusters. 8.10. Strongly asymmetric two-cluster dynamics -- 9. Interacting nephrons. 9.1. Kidney pressure and flow regulation. 9.2. Single-nephron model. 9.3. Bifurcation structure of the single-nephron model. 9.4. Coupled nephrons. 9.5. Experimental results. 9.6. Phase multistability. 9.7. Transition to synchronous chaotic behavior -- 10. Coherence resonance oscillators. 10.1. But what about the noise? 10.2. Coherence resonance. 10.3. Mutual synchronization. 10.4. Forced synchronization. 10.5. Clustering of noise-induced oscillations Interacting chaotic oscillators are of interest in many areas of physics, biology, and engineering. In the biological sciences, for instance, one of the challenging problems is to understand how a group of cells or functional units, each displaying complicated nonlinear dynamic phenomena, can interact with one another to produce a coherent response on a higher organizational level. This book is a guide to the fascinating new concept of chaotic synchronization. The topics covered range from transverse stability and riddled basins of attraction in a system of two coupled logistic maps over partial synchronization and clustering in systems of many chaotic oscillators, to noise-induced synchronization of coherence resonance oscillators. Other topics treated in the book are on-off intermittency and the role of the absorbing and mixed absorbing areas, periodic orbit threshold theory, the influence of a small parameter mismatch, and different mechanisms for chaotic phase synchronization. The biological examples include synchronization of the bursting behavior of coupled insulin-producing beta cells, chaotic phase synchronization in the pressure and flow regulation of neighboring functional units of the kidney, and homoclinic transitions to phase synchronization in microbiological reactors |
Beschreibung: | 1 Online-Ressource (xi, 428 p.) |
ISBN: | 9789812778260 9812778268 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043157534 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789812778260 |c electronic bk. |9 978-981-277-826-0 | ||
020 | |a 9812778268 |c electronic bk. |9 981-277-826-8 | ||
035 | |a (OCoLC)181368163 | ||
035 | |a (DE-599)BVBBV043157534 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 003/.857 |2 22 | |
100 | 1 | |a Mosekilde, Erik |e Verfasser |4 aut | |
245 | 1 | 0 | |a Chaotic synchronization |b applications to living systems |c Erik Mosekilde, Yuri Maistrenko, Dmitry Postnov |
264 | 1 | |a Singapore |b World Scientific |c c2002 | |
300 | |a 1 Online-Ressource (xi, 428 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series on nonlinear science |v v. 42 | |
500 | |a Includes bibliographical references and index | ||
500 | |a 1. Coupled nonlinear oscillators. 1.1. The role of synchronization. 1.2. Synchronization measures. 1.3. Mode-locking of endogenous economic cycles -- 2. Transverse stability of coupled maps. 2.1. Riddling, bubbling, and on-off intermittency. 2.2. Weak stability of the synchronized chaotic state. 2.3. Formation of riddled basins of attraction. 2.4. Destabilization of low-periodic orbits. 2.5. Different riddling scenarios. 2.6. Intermingled basins of attraction. 2.7. Partial synchronization for three coupled maps -- 3. Unfolding the riddling bifurcation. 3.1. Locally and globally riddled basins of attraction. 3.2. Conditions for soft and hard riddling. 3.3. Example of a soft riddling bifurcation. 3.4. Example of a hard riddling bifurcation. 3.5. Destabilization scenario for a = a[symbol]. 3.6. Coupled intermittency-III maps. 3.7. The contact bifurcation. 3.8. Conclusions -- | ||
500 | |a - 4. Time-continuous systems. 4.1. Two coupled Rossler oscillators. 4.2. Transverse destabilization of low-periodic orbits. 4.3. Riddled basins. 4.4. Bifurcation scenarios for asynchronous cycles. 4.5. The role of a small parameter mismatch. 4.6. Influence of asymmetries in the coupled system. 4.7. Transverse stability of the equilibrium point. 4.8. Partial synchronization of coupled oscillators. 4.9. Clustering in a system of four coupled oscillators. 4.10. Arrays of coupled Rossler oscillators -- 5. Coupled pancreatic cells. 5.1. The insulin producing beta-cells. 5.2. The bursting cell model. 5.3. Bifurcation diagrams for the cell model. 5.4. Coupled chaotically spiking cells. 5.5. Locally riddled basins of attraction. 5.6. Globally riddled basins of attraction. 5.7. Effects of cell inhomogeneities -- | ||
500 | |a - 6. Chaotic phase synchronization. 6.1. Signatures of phase synchronization. 6.2. Bifurcational analysis. 6.3. Role of multistability. 6.4. Mapping approach to multistability. 6.5. Suppression of the natural dynamics. 6.6. Chaotic hierarchy in high dimensions. 6.7. A route to high-order chaos -- 7. Population dynamic systems. 7.1. A system of cascaded microbiological reactors. 7.2. The microbiological oscillator. 7.3. Nonautonomous single-pool system. 7.4. Cascaded two-pool system. 7.5. Homoclinic synchronization mechanism. 7.6. One-dimensional array of population pools. 7.7. Conclusions -- | ||
500 | |a - 8. Clustering of globally coupled maps. 8.1. Ensembles of coupled chaotic oscillators. 8.2. The transcritical riddling bifurcation. 8.3. Global dynamics after a transcritical riddling. 8.4. Riddling and blowout scenarios. 8.5. Influence of a parameter mismatch. 8.6. Stability of K-cluster states. 8.7. Desynchronization of the coherent chaotic state. 8.8. Formation of nearly symmetric clusters. 8.9. Transverse stability of chaotic clusters. 8.10. Strongly asymmetric two-cluster dynamics -- 9. Interacting nephrons. 9.1. Kidney pressure and flow regulation. 9.2. Single-nephron model. 9.3. Bifurcation structure of the single-nephron model. 9.4. Coupled nephrons. 9.5. Experimental results. 9.6. Phase multistability. 9.7. Transition to synchronous chaotic behavior -- 10. Coherence resonance oscillators. 10.1. But what about the noise? 10.2. Coherence resonance. 10.3. Mutual synchronization. 10.4. Forced synchronization. 10.5. Clustering of noise-induced oscillations | ||
500 | |a Interacting chaotic oscillators are of interest in many areas of physics, biology, and engineering. In the biological sciences, for instance, one of the challenging problems is to understand how a group of cells or functional units, each displaying complicated nonlinear dynamic phenomena, can interact with one another to produce a coherent response on a higher organizational level. This book is a guide to the fascinating new concept of chaotic synchronization. The topics covered range from transverse stability and riddled basins of attraction in a system of two coupled logistic maps over partial synchronization and clustering in systems of many chaotic oscillators, to noise-induced synchronization of coherence resonance oscillators. Other topics treated in the book are on-off intermittency and the role of the absorbing and mixed absorbing areas, periodic orbit threshold theory, the influence of a small parameter mismatch, and different mechanisms for chaotic phase synchronization. The biological examples include synchronization of the bursting behavior of coupled insulin-producing beta cells, chaotic phase synchronization in the pressure and flow regulation of neighboring functional units of the kidney, and homoclinic transitions to phase synchronization in microbiological reactors | ||
650 | 7 | |a SCIENCE / Chaotic Behavior in Systems |2 bisacsh | |
650 | 7 | |a Chaotic behavior in systems |2 fast | |
650 | 7 | |a Synchronization |2 fast | |
650 | 4 | |a Chaotic behavior in systems | |
650 | 4 | |a Synchronization | |
650 | 0 | 7 | |a Synchronisierung |0 (DE-588)4130847-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 1 | |a Synchronisierung |0 (DE-588)4130847-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Maĭstrenko, I͡U. L. |e Sonstige |4 oth | |
700 | 1 | |a Postnov, Dmitry |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028581725 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175624289386496 |
---|---|
any_adam_object | |
author | Mosekilde, Erik |
author_facet | Mosekilde, Erik |
author_role | aut |
author_sort | Mosekilde, Erik |
author_variant | e m em |
building | Verbundindex |
bvnumber | BV043157534 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)181368163 (DE-599)BVBBV043157534 |
dewey-full | 003/.857 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.857 |
dewey-search | 003/.857 |
dewey-sort | 13 3857 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06863nmm a2200565zcb4500</leader><controlfield tag="001">BV043157534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812778260</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-826-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812778268</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-826-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181368163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043157534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.857</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mosekilde, Erik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaotic synchronization</subfield><subfield code="b">applications to living systems</subfield><subfield code="c">Erik Mosekilde, Yuri Maistrenko, Dmitry Postnov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 428 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science</subfield><subfield code="v">v. 42</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Coupled nonlinear oscillators. 1.1. The role of synchronization. 1.2. Synchronization measures. 1.3. Mode-locking of endogenous economic cycles -- 2. Transverse stability of coupled maps. 2.1. Riddling, bubbling, and on-off intermittency. 2.2. Weak stability of the synchronized chaotic state. 2.3. Formation of riddled basins of attraction. 2.4. Destabilization of low-periodic orbits. 2.5. Different riddling scenarios. 2.6. Intermingled basins of attraction. 2.7. Partial synchronization for three coupled maps -- 3. Unfolding the riddling bifurcation. 3.1. Locally and globally riddled basins of attraction. 3.2. Conditions for soft and hard riddling. 3.3. Example of a soft riddling bifurcation. 3.4. Example of a hard riddling bifurcation. 3.5. Destabilization scenario for a = a[symbol]. 3.6. Coupled intermittency-III maps. 3.7. The contact bifurcation. 3.8. Conclusions -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4. Time-continuous systems. 4.1. Two coupled Rossler oscillators. 4.2. Transverse destabilization of low-periodic orbits. 4.3. Riddled basins. 4.4. Bifurcation scenarios for asynchronous cycles. 4.5. The role of a small parameter mismatch. 4.6. Influence of asymmetries in the coupled system. 4.7. Transverse stability of the equilibrium point. 4.8. Partial synchronization of coupled oscillators. 4.9. Clustering in a system of four coupled oscillators. 4.10. Arrays of coupled Rossler oscillators -- 5. Coupled pancreatic cells. 5.1. The insulin producing beta-cells. 5.2. The bursting cell model. 5.3. Bifurcation diagrams for the cell model. 5.4. Coupled chaotically spiking cells. 5.5. Locally riddled basins of attraction. 5.6. Globally riddled basins of attraction. 5.7. Effects of cell inhomogeneities -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6. Chaotic phase synchronization. 6.1. Signatures of phase synchronization. 6.2. Bifurcational analysis. 6.3. Role of multistability. 6.4. Mapping approach to multistability. 6.5. Suppression of the natural dynamics. 6.6. Chaotic hierarchy in high dimensions. 6.7. A route to high-order chaos -- 7. Population dynamic systems. 7.1. A system of cascaded microbiological reactors. 7.2. The microbiological oscillator. 7.3. Nonautonomous single-pool system. 7.4. Cascaded two-pool system. 7.5. Homoclinic synchronization mechanism. 7.6. One-dimensional array of population pools. 7.7. Conclusions -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 8. Clustering of globally coupled maps. 8.1. Ensembles of coupled chaotic oscillators. 8.2. The transcritical riddling bifurcation. 8.3. Global dynamics after a transcritical riddling. 8.4. Riddling and blowout scenarios. 8.5. Influence of a parameter mismatch. 8.6. Stability of K-cluster states. 8.7. Desynchronization of the coherent chaotic state. 8.8. Formation of nearly symmetric clusters. 8.9. Transverse stability of chaotic clusters. 8.10. Strongly asymmetric two-cluster dynamics -- 9. Interacting nephrons. 9.1. Kidney pressure and flow regulation. 9.2. Single-nephron model. 9.3. Bifurcation structure of the single-nephron model. 9.4. Coupled nephrons. 9.5. Experimental results. 9.6. Phase multistability. 9.7. Transition to synchronous chaotic behavior -- 10. Coherence resonance oscillators. 10.1. But what about the noise? 10.2. Coherence resonance. 10.3. Mutual synchronization. 10.4. Forced synchronization. 10.5. Clustering of noise-induced oscillations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Interacting chaotic oscillators are of interest in many areas of physics, biology, and engineering. In the biological sciences, for instance, one of the challenging problems is to understand how a group of cells or functional units, each displaying complicated nonlinear dynamic phenomena, can interact with one another to produce a coherent response on a higher organizational level. This book is a guide to the fascinating new concept of chaotic synchronization. The topics covered range from transverse stability and riddled basins of attraction in a system of two coupled logistic maps over partial synchronization and clustering in systems of many chaotic oscillators, to noise-induced synchronization of coherence resonance oscillators. Other topics treated in the book are on-off intermittency and the role of the absorbing and mixed absorbing areas, periodic orbit threshold theory, the influence of a small parameter mismatch, and different mechanisms for chaotic phase synchronization. The biological examples include synchronization of the bursting behavior of coupled insulin-producing beta cells, chaotic phase synchronization in the pressure and flow regulation of neighboring functional units of the kidney, and homoclinic transitions to phase synchronization in microbiological reactors</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chaotic Behavior in Systems</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaotic behavior in systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synchronization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchronization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Synchronisierung</subfield><subfield code="0">(DE-588)4130847-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Synchronisierung</subfield><subfield code="0">(DE-588)4130847-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maĭstrenko, I͡U. L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Postnov, Dmitry</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028581725</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043157534 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:15Z |
institution | BVB |
isbn | 9789812778260 9812778268 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028581725 |
oclc_num | 181368163 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 428 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific |
record_format | marc |
series2 | World Scientific series on nonlinear science |
spelling | Mosekilde, Erik Verfasser aut Chaotic synchronization applications to living systems Erik Mosekilde, Yuri Maistrenko, Dmitry Postnov Singapore World Scientific c2002 1 Online-Ressource (xi, 428 p.) txt rdacontent c rdamedia cr rdacarrier World Scientific series on nonlinear science v. 42 Includes bibliographical references and index 1. Coupled nonlinear oscillators. 1.1. The role of synchronization. 1.2. Synchronization measures. 1.3. Mode-locking of endogenous economic cycles -- 2. Transverse stability of coupled maps. 2.1. Riddling, bubbling, and on-off intermittency. 2.2. Weak stability of the synchronized chaotic state. 2.3. Formation of riddled basins of attraction. 2.4. Destabilization of low-periodic orbits. 2.5. Different riddling scenarios. 2.6. Intermingled basins of attraction. 2.7. Partial synchronization for three coupled maps -- 3. Unfolding the riddling bifurcation. 3.1. Locally and globally riddled basins of attraction. 3.2. Conditions for soft and hard riddling. 3.3. Example of a soft riddling bifurcation. 3.4. Example of a hard riddling bifurcation. 3.5. Destabilization scenario for a = a[symbol]. 3.6. Coupled intermittency-III maps. 3.7. The contact bifurcation. 3.8. Conclusions -- - 4. Time-continuous systems. 4.1. Two coupled Rossler oscillators. 4.2. Transverse destabilization of low-periodic orbits. 4.3. Riddled basins. 4.4. Bifurcation scenarios for asynchronous cycles. 4.5. The role of a small parameter mismatch. 4.6. Influence of asymmetries in the coupled system. 4.7. Transverse stability of the equilibrium point. 4.8. Partial synchronization of coupled oscillators. 4.9. Clustering in a system of four coupled oscillators. 4.10. Arrays of coupled Rossler oscillators -- 5. Coupled pancreatic cells. 5.1. The insulin producing beta-cells. 5.2. The bursting cell model. 5.3. Bifurcation diagrams for the cell model. 5.4. Coupled chaotically spiking cells. 5.5. Locally riddled basins of attraction. 5.6. Globally riddled basins of attraction. 5.7. Effects of cell inhomogeneities -- - 6. Chaotic phase synchronization. 6.1. Signatures of phase synchronization. 6.2. Bifurcational analysis. 6.3. Role of multistability. 6.4. Mapping approach to multistability. 6.5. Suppression of the natural dynamics. 6.6. Chaotic hierarchy in high dimensions. 6.7. A route to high-order chaos -- 7. Population dynamic systems. 7.1. A system of cascaded microbiological reactors. 7.2. The microbiological oscillator. 7.3. Nonautonomous single-pool system. 7.4. Cascaded two-pool system. 7.5. Homoclinic synchronization mechanism. 7.6. One-dimensional array of population pools. 7.7. Conclusions -- - 8. Clustering of globally coupled maps. 8.1. Ensembles of coupled chaotic oscillators. 8.2. The transcritical riddling bifurcation. 8.3. Global dynamics after a transcritical riddling. 8.4. Riddling and blowout scenarios. 8.5. Influence of a parameter mismatch. 8.6. Stability of K-cluster states. 8.7. Desynchronization of the coherent chaotic state. 8.8. Formation of nearly symmetric clusters. 8.9. Transverse stability of chaotic clusters. 8.10. Strongly asymmetric two-cluster dynamics -- 9. Interacting nephrons. 9.1. Kidney pressure and flow regulation. 9.2. Single-nephron model. 9.3. Bifurcation structure of the single-nephron model. 9.4. Coupled nephrons. 9.5. Experimental results. 9.6. Phase multistability. 9.7. Transition to synchronous chaotic behavior -- 10. Coherence resonance oscillators. 10.1. But what about the noise? 10.2. Coherence resonance. 10.3. Mutual synchronization. 10.4. Forced synchronization. 10.5. Clustering of noise-induced oscillations Interacting chaotic oscillators are of interest in many areas of physics, biology, and engineering. In the biological sciences, for instance, one of the challenging problems is to understand how a group of cells or functional units, each displaying complicated nonlinear dynamic phenomena, can interact with one another to produce a coherent response on a higher organizational level. This book is a guide to the fascinating new concept of chaotic synchronization. The topics covered range from transverse stability and riddled basins of attraction in a system of two coupled logistic maps over partial synchronization and clustering in systems of many chaotic oscillators, to noise-induced synchronization of coherence resonance oscillators. Other topics treated in the book are on-off intermittency and the role of the absorbing and mixed absorbing areas, periodic orbit threshold theory, the influence of a small parameter mismatch, and different mechanisms for chaotic phase synchronization. The biological examples include synchronization of the bursting behavior of coupled insulin-producing beta cells, chaotic phase synchronization in the pressure and flow regulation of neighboring functional units of the kidney, and homoclinic transitions to phase synchronization in microbiological reactors SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Synchronization fast Chaotic behavior in systems Synchronization Synchronisierung (DE-588)4130847-5 gnd rswk-swf Chaotisches System (DE-588)4316104-2 gnd rswk-swf Chaotisches System (DE-588)4316104-2 s Synchronisierung (DE-588)4130847-5 s 1\p DE-604 Maĭstrenko, I͡U. L. Sonstige oth Postnov, Dmitry Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mosekilde, Erik Chaotic synchronization applications to living systems SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Synchronization fast Chaotic behavior in systems Synchronization Synchronisierung (DE-588)4130847-5 gnd Chaotisches System (DE-588)4316104-2 gnd |
subject_GND | (DE-588)4130847-5 (DE-588)4316104-2 |
title | Chaotic synchronization applications to living systems |
title_auth | Chaotic synchronization applications to living systems |
title_exact_search | Chaotic synchronization applications to living systems |
title_full | Chaotic synchronization applications to living systems Erik Mosekilde, Yuri Maistrenko, Dmitry Postnov |
title_fullStr | Chaotic synchronization applications to living systems Erik Mosekilde, Yuri Maistrenko, Dmitry Postnov |
title_full_unstemmed | Chaotic synchronization applications to living systems Erik Mosekilde, Yuri Maistrenko, Dmitry Postnov |
title_short | Chaotic synchronization |
title_sort | chaotic synchronization applications to living systems |
title_sub | applications to living systems |
topic | SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Synchronization fast Chaotic behavior in systems Synchronization Synchronisierung (DE-588)4130847-5 gnd Chaotisches System (DE-588)4316104-2 gnd |
topic_facet | SCIENCE / Chaotic Behavior in Systems Chaotic behavior in systems Synchronization Synchronisierung Chaotisches System |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210567 |
work_keys_str_mv | AT mosekildeerik chaoticsynchronizationapplicationstolivingsystems AT maistrenkoiul chaoticsynchronizationapplicationstolivingsystems AT postnovdmitry chaoticsynchronizationapplicationstolivingsystems |