Random walk in random and non-random environments:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
2013
|
Ausgabe: | 3rd ed |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and indexes I. Simple symmetric random walk in [symbol]. Notations and abbreviations. 1. Introduction of part I. 2. Distributions. 3. Recurrence and the zero-one Law. 4. From the strong law of large numbers to the law of iterated logarithm. 5. Lévy classes. 6. Wiener process and invariance principle. 7. Increments. 8. Strassen type theorems. 9. Distribution of the local time. 10. Local time and invariance principle. 11. Strong theorems of the local time. 12. Excursions. 13. Frequently and rarely visited sites. 14. An embedding theorem. 15. A few further results. 16. Summary of part I -- II. Simple symmetric random walk in [symbol]. Notations. 17. The recurrence theorem. 18. Wiener process and invariance principle. 19. The law of iterated logarithm. 20. Local time. 21. The range. 22. Heavy points and heavy balls. 23. Crossing and self-crossing. 24. Large covered balls. 25. Long excursions. 26. Speed of escape. 27. A few further problems -- III. Random walk in random environment. Notations. 28. Introduction of part III. 29. In the first six days. 30. After the sixth day. 31. What can a physicist say about the local time [symbol]? 32. On the favourite value of the RWIRE. 33. A few further problems -- IV. Random walks in graphs. 34. Introduction of part IV. 35. Random walk in comb. 36. Random walk in a comb and in a brush with crossings. 37. Random walk on a spider. 38. Random walk in half-plane-half-comb The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results - mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk. Since the first and second editions were published in 1990 and 2005, a number of new results have appeared in the literature. The first two editions contained many unsolved problems and conjectures which have since been settled; this third, revised and enlarged edition includes those new results. In this edition, a completely new part is included concerning Simple Random Walks on Graphs. Properties of random walks on several concrete graphs have been studied in the last decade. Some of the obtained results are also presented |
Beschreibung: | 1 Online-Ressource (pages cm.) |
ISBN: | 9789814447508 9789814447515 9814447501 981444751X |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043156344 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814447508 |9 978-981-4447-50-8 | ||
020 | |a 9789814447515 |c electronic bk. |9 978-981-4447-51-5 | ||
020 | |a 9814447501 |9 981-4447-50-1 | ||
020 | |a 981444751X |c electronic bk. |9 981-4447-51-X | ||
035 | |a (OCoLC)842932677 | ||
035 | |a (DE-599)BVBBV043156344 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.2/82 |2 23 | |
100 | 1 | |a Révész, Pál |e Verfasser |4 aut | |
245 | 1 | 0 | |a Random walk in random and non-random environments |c by Pál Révész, Technische Universität Wien, Austria |
250 | |a 3rd ed | ||
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c 2013 | |
300 | |a 1 Online-Ressource (pages cm.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and indexes | ||
500 | |a I. Simple symmetric random walk in [symbol]. Notations and abbreviations. 1. Introduction of part I. 2. Distributions. 3. Recurrence and the zero-one Law. 4. From the strong law of large numbers to the law of iterated logarithm. 5. Lévy classes. 6. Wiener process and invariance principle. 7. Increments. 8. Strassen type theorems. 9. Distribution of the local time. 10. Local time and invariance principle. 11. Strong theorems of the local time. 12. Excursions. 13. Frequently and rarely visited sites. 14. An embedding theorem. 15. A few further results. 16. Summary of part I -- II. Simple symmetric random walk in [symbol]. Notations. 17. The recurrence theorem. 18. Wiener process and invariance principle. 19. The law of iterated logarithm. 20. Local time. 21. The range. 22. Heavy points and heavy balls. 23. Crossing and self-crossing. 24. Large covered balls. 25. Long excursions. 26. Speed of escape. 27. A few further problems -- III. Random walk in random environment. Notations. 28. Introduction of part III. 29. In the first six days. 30. After the sixth day. 31. What can a physicist say about the local time [symbol]? 32. On the favourite value of the RWIRE. 33. A few further problems -- IV. Random walks in graphs. 34. Introduction of part IV. 35. Random walk in comb. 36. Random walk in a comb and in a brush with crossings. 37. Random walk on a spider. 38. Random walk in half-plane-half-comb | ||
500 | |a The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results - mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk. Since the first and second editions were published in 1990 and 2005, a number of new results have appeared in the literature. The first two editions contained many unsolved problems and conjectures which have since been settled; this third, revised and enlarged edition includes those new results. In this edition, a completely new part is included concerning Simple Random Walks on Graphs. Properties of random walks on several concrete graphs have been studied in the last decade. Some of the obtained results are also presented | ||
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Random walks (Mathematics) |2 fast | |
650 | 4 | |a Random walks (Mathematics) | |
650 | 0 | 7 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028580535 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175621922750464 |
---|---|
any_adam_object | |
author | Révész, Pál |
author_facet | Révész, Pál |
author_role | aut |
author_sort | Révész, Pál |
author_variant | p r pr |
building | Verbundindex |
bvnumber | BV043156344 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)842932677 (DE-599)BVBBV043156344 |
dewey-full | 519.2/82 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/82 |
dewey-search | 519.2/82 |
dewey-sort | 3519.2 282 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3rd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04544nmm a2200481zc 4500</leader><controlfield tag="001">BV043156344</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814447508</subfield><subfield code="9">978-981-4447-50-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814447515</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4447-51-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814447501</subfield><subfield code="9">981-4447-50-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981444751X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4447-51-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)842932677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043156344</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/82</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Révész, Pál</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random walk in random and non-random environments</subfield><subfield code="c">by Pál Révész, Technische Universität Wien, Austria</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (pages cm.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">I. Simple symmetric random walk in [symbol]. Notations and abbreviations. 1. Introduction of part I. 2. Distributions. 3. Recurrence and the zero-one Law. 4. From the strong law of large numbers to the law of iterated logarithm. 5. Lévy classes. 6. Wiener process and invariance principle. 7. Increments. 8. Strassen type theorems. 9. Distribution of the local time. 10. Local time and invariance principle. 11. Strong theorems of the local time. 12. Excursions. 13. Frequently and rarely visited sites. 14. An embedding theorem. 15. A few further results. 16. Summary of part I -- II. Simple symmetric random walk in [symbol]. Notations. 17. The recurrence theorem. 18. Wiener process and invariance principle. 19. The law of iterated logarithm. 20. Local time. 21. The range. 22. Heavy points and heavy balls. 23. Crossing and self-crossing. 24. Large covered balls. 25. Long excursions. 26. Speed of escape. 27. A few further problems -- III. Random walk in random environment. Notations. 28. Introduction of part III. 29. In the first six days. 30. After the sixth day. 31. What can a physicist say about the local time [symbol]? 32. On the favourite value of the RWIRE. 33. A few further problems -- IV. Random walks in graphs. 34. Introduction of part IV. 35. Random walk in comb. 36. Random walk in a comb and in a brush with crossings. 37. Random walk on a spider. 38. Random walk in half-plane-half-comb</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results - mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk. Since the first and second editions were published in 1990 and 2005, a number of new results have appeared in the literature. The first two editions contained many unsolved problems and conjectures which have since been settled; this third, revised and enlarged edition includes those new results. In this edition, a completely new part is included concerning Simple Random Walks on Graphs. Properties of random walks on several concrete graphs have been studied in the last decade. Some of the obtained results are also presented</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random walks (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028580535</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043156344 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:12Z |
institution | BVB |
isbn | 9789814447508 9789814447515 9814447501 981444751X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028580535 |
oclc_num | 842932677 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (pages cm.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
spelling | Révész, Pál Verfasser aut Random walk in random and non-random environments by Pál Révész, Technische Universität Wien, Austria 3rd ed [Hackensack] New Jersey World Scientific 2013 1 Online-Ressource (pages cm.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and indexes I. Simple symmetric random walk in [symbol]. Notations and abbreviations. 1. Introduction of part I. 2. Distributions. 3. Recurrence and the zero-one Law. 4. From the strong law of large numbers to the law of iterated logarithm. 5. Lévy classes. 6. Wiener process and invariance principle. 7. Increments. 8. Strassen type theorems. 9. Distribution of the local time. 10. Local time and invariance principle. 11. Strong theorems of the local time. 12. Excursions. 13. Frequently and rarely visited sites. 14. An embedding theorem. 15. A few further results. 16. Summary of part I -- II. Simple symmetric random walk in [symbol]. Notations. 17. The recurrence theorem. 18. Wiener process and invariance principle. 19. The law of iterated logarithm. 20. Local time. 21. The range. 22. Heavy points and heavy balls. 23. Crossing and self-crossing. 24. Large covered balls. 25. Long excursions. 26. Speed of escape. 27. A few further problems -- III. Random walk in random environment. Notations. 28. Introduction of part III. 29. In the first six days. 30. After the sixth day. 31. What can a physicist say about the local time [symbol]? 32. On the favourite value of the RWIRE. 33. A few further problems -- IV. Random walks in graphs. 34. Introduction of part IV. 35. Random walk in comb. 36. Random walk in a comb and in a brush with crossings. 37. Random walk on a spider. 38. Random walk in half-plane-half-comb The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results - mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk. Since the first and second editions were published in 1990 and 2005, a number of new results have appeared in the literature. The first two editions contained many unsolved problems and conjectures which have since been settled; this third, revised and enlarged edition includes those new results. In this edition, a completely new part is included concerning Simple Random Walks on Graphs. Properties of random walks on several concrete graphs have been studied in the last decade. Some of the obtained results are also presented MATHEMATICS / Probability & Statistics / General bisacsh Random walks (Mathematics) fast Random walks (Mathematics) Irrfahrtsproblem (DE-588)4162442-7 gnd rswk-swf Irrfahrtsproblem (DE-588)4162442-7 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Révész, Pál Random walk in random and non-random environments MATHEMATICS / Probability & Statistics / General bisacsh Random walks (Mathematics) fast Random walks (Mathematics) Irrfahrtsproblem (DE-588)4162442-7 gnd |
subject_GND | (DE-588)4162442-7 |
title | Random walk in random and non-random environments |
title_auth | Random walk in random and non-random environments |
title_exact_search | Random walk in random and non-random environments |
title_full | Random walk in random and non-random environments by Pál Révész, Technische Universität Wien, Austria |
title_fullStr | Random walk in random and non-random environments by Pál Révész, Technische Universität Wien, Austria |
title_full_unstemmed | Random walk in random and non-random environments by Pál Révész, Technische Universität Wien, Austria |
title_short | Random walk in random and non-random environments |
title_sort | random walk in random and non random environments |
topic | MATHEMATICS / Probability & Statistics / General bisacsh Random walks (Mathematics) fast Random walks (Mathematics) Irrfahrtsproblem (DE-588)4162442-7 gnd |
topic_facet | MATHEMATICS / Probability & Statistics / General Random walks (Mathematics) Irrfahrtsproblem |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575418 |
work_keys_str_mv | AT reveszpal randomwalkinrandomandnonrandomenvironments |