Direct methods in the calculus of variations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
2005
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 UER01 Volltext |
Beschreibung: | Includes bibliographical references (pages 377-398) and index A comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well-known and were widely-used in the 20th century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this work, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The volume is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory |
Beschreibung: | 1 Online-Ressource (vii, 403 pages) |
ISBN: | 1281935905 9781281935908 9789812795557 9812795553 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043155968 | ||
003 | DE-604 | ||
005 | 20191015 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2005 |||| o||u| ||||||eng d | ||
020 | |a 1281935905 |9 1-281-93590-5 | ||
020 | |a 9781281935908 |9 978-1-281-93590-8 | ||
020 | |a 9789812795557 |c electronic bk. |9 978-981-279-555-7 | ||
020 | |a 9812795553 |c electronic bk. |9 981-279-555-3 | ||
035 | |a (OCoLC)263159070 | ||
035 | |a (DE-599)BVBBV043155968 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 |a DE-29 | ||
082 | 0 | |a 515/.64 |2 22 | |
100 | 1 | |a Giusti, Enrico |d 1940-2024 |e Verfasser |0 (DE-588)1102399221 |4 aut | |
245 | 1 | 0 | |a Direct methods in the calculus of variations |c Enrico Giusti |
246 | 1 | 3 | |a Calculus of variations |
264 | 1 | |a New Jersey |b World Scientific |c 2005 | |
300 | |a 1 Online-Ressource (vii, 403 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 377-398) and index | ||
500 | |a A comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well-known and were widely-used in the 20th century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this work, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The volume is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory | ||
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Calculus of variations |2 fast | |
650 | 4 | |a Calculus of variations | |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028580158 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657 |l UER01 |p ZDB-4-EBA |q UER_PDA_EBA_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175621100666880 |
---|---|
any_adam_object | |
author | Giusti, Enrico 1940-2024 |
author_GND | (DE-588)1102399221 |
author_facet | Giusti, Enrico 1940-2024 |
author_role | aut |
author_sort | Giusti, Enrico 1940-2024 |
author_variant | e g eg |
building | Verbundindex |
bvnumber | BV043155968 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)263159070 (DE-599)BVBBV043155968 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03214nmm a2200493zc 4500</leader><controlfield tag="001">BV043155968</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191015 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281935905</subfield><subfield code="9">1-281-93590-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281935908</subfield><subfield code="9">978-1-281-93590-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795557</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-555-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812795553</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-279-555-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263159070</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043155968</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giusti, Enrico</subfield><subfield code="d">1940-2024</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1102399221</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Direct methods in the calculus of variations</subfield><subfield code="c">Enrico Giusti</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 403 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 377-398) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well-known and were widely-used in the 20th century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this work, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The volume is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus of variations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028580158</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">UER_PDA_EBA_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043155968 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:12Z |
institution | BVB |
isbn | 1281935905 9781281935908 9789812795557 9812795553 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028580158 |
oclc_num | 263159070 |
open_access_boolean | |
owner | DE-1046 DE-1047 DE-29 |
owner_facet | DE-1046 DE-1047 DE-29 |
physical | 1 Online-Ressource (vii, 403 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA ZDB-4-EBA UER_PDA_EBA_Kauf |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | World Scientific |
record_format | marc |
spelling | Giusti, Enrico 1940-2024 Verfasser (DE-588)1102399221 aut Direct methods in the calculus of variations Enrico Giusti Calculus of variations New Jersey World Scientific 2005 1 Online-Ressource (vii, 403 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 377-398) and index A comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well-known and were widely-used in the 20th century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this work, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The volume is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Calculus of variations fast Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Giusti, Enrico 1940-2024 Direct methods in the calculus of variations MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Calculus of variations fast Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd |
subject_GND | (DE-588)4062355-5 |
title | Direct methods in the calculus of variations |
title_alt | Calculus of variations |
title_auth | Direct methods in the calculus of variations |
title_exact_search | Direct methods in the calculus of variations |
title_full | Direct methods in the calculus of variations Enrico Giusti |
title_fullStr | Direct methods in the calculus of variations Enrico Giusti |
title_full_unstemmed | Direct methods in the calculus of variations Enrico Giusti |
title_short | Direct methods in the calculus of variations |
title_sort | direct methods in the calculus of variations |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Calculus of variations fast Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Calculus of variations Variationsrechnung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235657 |
work_keys_str_mv | AT giustienrico directmethodsinthecalculusofvariations AT giustienrico calculusofvariations |