Differential geometry applied to dynamical systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, N.J.
World Scientific
2009
|
Schriftenreihe: | World Scientific series on nonlinear science
vol. 66 World Scientific series on nonlinear science v. 66 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 297-307) and index This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence .. |
Beschreibung: | 1 Online-Ressource (xxvii, 312 pages) |
ISBN: | 9789814277143 9789814277150 9814277142 9814277150 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043155316 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789814277143 |9 978-981-4277-14-3 | ||
020 | |a 9789814277150 |c electronic bk. |9 978-981-4277-15-0 | ||
020 | |a 9814277142 |9 981-4277-14-2 | ||
020 | |a 9814277150 |c electronic bk. |9 981-4277-15-0 | ||
035 | |a (OCoLC)593212992 | ||
035 | |a (DE-599)BVBBV043155316 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 531.11 |2 22 | |
100 | 1 | |a Ginoux, Jean-Marc |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential geometry applied to dynamical systems |c Jean-Marc Ginoux |
264 | 1 | |a Hackensack, N.J. |b World Scientific |c 2009 | |
300 | |a 1 Online-Ressource (xxvii, 312 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series on nonlinear science |v vol. 66 | |
490 | 0 | |a World Scientific series on nonlinear science |v v. 66 | |
500 | |a Includes bibliographical references (pages 297-307) and index | ||
500 | |a This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence .. | ||
650 | 7 | |a SCIENCE / Mechanics / Dynamics |2 bisacsh | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Geometry, Differential | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028579507 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175619779461120 |
---|---|
any_adam_object | |
author | Ginoux, Jean-Marc |
author_facet | Ginoux, Jean-Marc |
author_role | aut |
author_sort | Ginoux, Jean-Marc |
author_variant | j m g jmg |
building | Verbundindex |
bvnumber | BV043155316 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)593212992 (DE-599)BVBBV043155316 |
dewey-full | 531.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531.11 |
dewey-search | 531.11 |
dewey-sort | 3531.11 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02388nmm a2200433zcb4500</leader><controlfield tag="001">BV043155316</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814277143</subfield><subfield code="9">978-981-4277-14-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814277150</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4277-15-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814277142</subfield><subfield code="9">981-4277-14-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814277150</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4277-15-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)593212992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043155316</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531.11</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ginoux, Jean-Marc</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential geometry applied to dynamical systems</subfield><subfield code="c">Jean-Marc Ginoux</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, N.J.</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvii, 312 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science</subfield><subfield code="v">vol. 66</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science</subfield><subfield code="v">v. 66</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 297-307) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence ..</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / Dynamics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028579507</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043155316 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:10Z |
institution | BVB |
isbn | 9789814277143 9789814277150 9814277142 9814277150 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028579507 |
oclc_num | 593212992 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxvii, 312 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific |
record_format | marc |
series2 | World Scientific series on nonlinear science |
spelling | Ginoux, Jean-Marc Verfasser aut Differential geometry applied to dynamical systems Jean-Marc Ginoux Hackensack, N.J. World Scientific 2009 1 Online-Ressource (xxvii, 312 pages) txt rdacontent c rdamedia cr rdacarrier World Scientific series on nonlinear science vol. 66 World Scientific series on nonlinear science v. 66 Includes bibliographical references (pages 297-307) and index This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence .. SCIENCE / Mechanics / Dynamics bisacsh Dynamics Geometry, Differential http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321 Aggregator Volltext |
spellingShingle | Ginoux, Jean-Marc Differential geometry applied to dynamical systems SCIENCE / Mechanics / Dynamics bisacsh Dynamics Geometry, Differential |
title | Differential geometry applied to dynamical systems |
title_auth | Differential geometry applied to dynamical systems |
title_exact_search | Differential geometry applied to dynamical systems |
title_full | Differential geometry applied to dynamical systems Jean-Marc Ginoux |
title_fullStr | Differential geometry applied to dynamical systems Jean-Marc Ginoux |
title_full_unstemmed | Differential geometry applied to dynamical systems Jean-Marc Ginoux |
title_short | Differential geometry applied to dynamical systems |
title_sort | differential geometry applied to dynamical systems |
topic | SCIENCE / Mechanics / Dynamics bisacsh Dynamics Geometry, Differential |
topic_facet | SCIENCE / Mechanics / Dynamics Dynamics Geometry, Differential |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321 |
work_keys_str_mv | AT ginouxjeanmarc differentialgeometryappliedtodynamicalsystems |