A brief guide to algebraic number theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2001
|
Schriftenreihe: | London Mathematical Society student texts
50 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 143-144) and index Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included |
Beschreibung: | 1 Online-Ressource (ix, 146 p.) |
ISBN: | 0521004233 052180292X 1107089549 1139173367 9780521004237 9780521802925 9781107089549 9781139173360 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043153033 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2001 |||| o||u| ||||||eng d | ||
020 | |a 0521004233 |9 0-521-00423-3 | ||
020 | |a 052180292X |9 0-521-80292-X | ||
020 | |a 1107089549 |c electronic bk. |9 1-107-08954-9 | ||
020 | |a 1139173367 |c electronic bk. |9 1-139-17336-7 | ||
020 | |a 9780521004237 |9 978-0-521-00423-7 | ||
020 | |a 9780521802925 |9 978-0-521-80292-5 | ||
020 | |a 9781107089549 |c electronic bk. |9 978-1-107-08954-9 | ||
020 | |a 9781139173360 |c electronic bk. |9 978-1-139-17336-0 | ||
035 | |a (OCoLC)817930348 | ||
035 | |a (DE-599)BVBBV043153033 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.74 |2 22 | |
100 | 1 | |a Swinnerton-Dyer, H. P. F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A brief guide to algebraic number theory |c H.P.F. Swinnerton-Dyer |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2001 | |
300 | |a 1 Online-Ressource (ix, 146 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 50 | |
500 | |a Includes bibliographical references (p. 143-144) and index | ||
500 | |a Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory | ||
500 | |a Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included | ||
650 | 4 | |a Nombres algébriques, Théorie des | |
650 | 7 | |a TEORIA DOS NÚMEROS. |2 larpcal | |
650 | 7 | |a NÚMEROS ALGÉBRICOS. |2 larpcal | |
650 | 7 | |a Getaltheorie |2 gtt | |
650 | 7 | |a Algebraische Zahlentheorie |2 swd | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Algebraic number theory |2 fast | |
650 | 4 | |a Algebraic number theory | |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028577224 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175615117492224 |
---|---|
any_adam_object | |
author | Swinnerton-Dyer, H. P. F. |
author_facet | Swinnerton-Dyer, H. P. F. |
author_role | aut |
author_sort | Swinnerton-Dyer, H. P. F. |
author_variant | h p f s d hpfs hpfsd |
building | Verbundindex |
bvnumber | BV043153033 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)817930348 (DE-599)BVBBV043153033 |
dewey-full | 512/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.74 |
dewey-search | 512/.74 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03651nmm a2200613zcb4500</leader><controlfield tag="001">BV043153033</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521004233</subfield><subfield code="9">0-521-00423-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052180292X</subfield><subfield code="9">0-521-80292-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089549</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08954-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139173367</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-139-17336-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521004237</subfield><subfield code="9">978-0-521-00423-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521802925</subfield><subfield code="9">978-0-521-80292-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089549</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08954-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139173360</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-139-17336-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)817930348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043153033</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swinnerton-Dyer, H. P. F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A brief guide to algebraic number theory</subfield><subfield code="c">H.P.F. Swinnerton-Dyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 146 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">50</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 143-144) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres algébriques, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TEORIA DOS NÚMEROS.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NÚMEROS ALGÉBRICOS.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Getaltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028577224</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043153033 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:06Z |
institution | BVB |
isbn | 0521004233 052180292X 1107089549 1139173367 9780521004237 9780521802925 9781107089549 9781139173360 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028577224 |
oclc_num | 817930348 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (ix, 146 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Swinnerton-Dyer, H. P. F. Verfasser aut A brief guide to algebraic number theory H.P.F. Swinnerton-Dyer Cambridge Cambridge University Press 2001 1 Online-Ressource (ix, 146 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 50 Includes bibliographical references (p. 143-144) and index Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included Nombres algébriques, Théorie des TEORIA DOS NÚMEROS. larpcal NÚMEROS ALGÉBRICOS. larpcal Getaltheorie gtt Algebraische Zahlentheorie swd MATHEMATICS / Number Theory bisacsh Algebraic number theory fast Algebraic number theory Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Algebraische Zahlentheorie (DE-588)4001170-7 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Swinnerton-Dyer, H. P. F. A brief guide to algebraic number theory Nombres algébriques, Théorie des TEORIA DOS NÚMEROS. larpcal NÚMEROS ALGÉBRICOS. larpcal Getaltheorie gtt Algebraische Zahlentheorie swd MATHEMATICS / Number Theory bisacsh Algebraic number theory fast Algebraic number theory Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
subject_GND | (DE-588)4001170-7 (DE-588)4151278-9 |
title | A brief guide to algebraic number theory |
title_auth | A brief guide to algebraic number theory |
title_exact_search | A brief guide to algebraic number theory |
title_full | A brief guide to algebraic number theory H.P.F. Swinnerton-Dyer |
title_fullStr | A brief guide to algebraic number theory H.P.F. Swinnerton-Dyer |
title_full_unstemmed | A brief guide to algebraic number theory H.P.F. Swinnerton-Dyer |
title_short | A brief guide to algebraic number theory |
title_sort | a brief guide to algebraic number theory |
topic | Nombres algébriques, Théorie des TEORIA DOS NÚMEROS. larpcal NÚMEROS ALGÉBRICOS. larpcal Getaltheorie gtt Algebraische Zahlentheorie swd MATHEMATICS / Number Theory bisacsh Algebraic number theory fast Algebraic number theory Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
topic_facet | Nombres algébriques, Théorie des TEORIA DOS NÚMEROS. NÚMEROS ALGÉBRICOS. Getaltheorie Algebraische Zahlentheorie MATHEMATICS / Number Theory Algebraic number theory Einführung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570391 |
work_keys_str_mv | AT swinnertondyerhpf abriefguidetoalgebraicnumbertheory |