A posteriori estimates for partial differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Walter de Gruyter
©2008
|
Schriftenreihe: | Radon series on computational and applied mathematics
4 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 291-311) and index Introduction -- Overview -- Poisson's equation -- Linear elliptic problems -- Elasticity -- Incompressible viscous fluids -- Generalizations -- Nonlinear problems -- Other problems This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods |
Beschreibung: | 1 Online-Ressource (xi, 316 pages) |
ISBN: | 1283396785 3110191539 3110203049 9781283396783 9783110191530 9783110203042 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043152970 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 1283396785 |9 1-283-39678-5 | ||
020 | |a 3110191539 |9 3-11-019153-9 | ||
020 | |a 3110203049 |c electronic bk. |9 3-11-020304-9 | ||
020 | |a 9781283396783 |9 978-1-283-39678-3 | ||
020 | |a 9783110191530 |9 978-3-11-019153-0 | ||
020 | |a 9783110203042 |c electronic bk. |9 978-3-11-020304-2 | ||
035 | |a (OCoLC)301965291 | ||
035 | |a (DE-599)BVBBV043152970 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.353 |2 22 | |
100 | 1 | |a Repin, Sergey I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A posteriori estimates for partial differential equations |c Sergey Repin |
264 | 1 | |a Berlin |b Walter de Gruyter |c ©2008 | |
300 | |a 1 Online-Ressource (xi, 316 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Radon series on computational and applied mathematics |v 4 | |
500 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 | ||
500 | |a Includes bibliographical references (pages 291-311) and index | ||
500 | |a Introduction -- Overview -- Poisson's equation -- Linear elliptic problems -- Elasticity -- Incompressible viscous fluids -- Generalizations -- Nonlinear problems -- Other problems | ||
500 | |a This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods | ||
650 | 7 | |a MATHEMATICS / Differential Equations / Partial |2 bisacsh | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Error analysis (Mathematics) |2 fast | |
650 | 7 | |a A-posteriori-Abschätzung |2 swd | |
650 | 7 | |a Partielle Differentialgleichung |2 swd | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Error analysis (Mathematics) | |
650 | 0 | 7 | |a A-posteriori-Abschätzung |0 (DE-588)4346907-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a A-posteriori-Abschätzung |0 (DE-588)4346907-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028577161 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175614978031616 |
---|---|
any_adam_object | |
author | Repin, Sergey I. |
author_facet | Repin, Sergey I. |
author_role | aut |
author_sort | Repin, Sergey I. |
author_variant | s i r si sir |
building | Verbundindex |
bvnumber | BV043152970 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)301965291 (DE-599)BVBBV043152970 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03351nmm a2200589zcb4500</leader><controlfield tag="001">BV043152970</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283396785</subfield><subfield code="9">1-283-39678-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110191539</subfield><subfield code="9">3-11-019153-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110203049</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-020304-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283396783</subfield><subfield code="9">978-1-283-39678-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110191530</subfield><subfield code="9">978-3-11-019153-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110203042</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-020304-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)301965291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043152970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Repin, Sergey I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A posteriori estimates for partial differential equations</subfield><subfield code="c">Sergey Repin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">©2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 316 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Radon series on computational and applied mathematics</subfield><subfield code="v">4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 291-311) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- Overview -- Poisson's equation -- Linear elliptic problems -- Elasticity -- Incompressible viscous fluids -- Generalizations -- Nonlinear problems -- Other problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / Partial</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Error analysis (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="0">(DE-588)4346907-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="0">(DE-588)4346907-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028577161</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043152970 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:06Z |
institution | BVB |
isbn | 1283396785 3110191539 3110203049 9781283396783 9783110191530 9783110203042 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028577161 |
oclc_num | 301965291 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 316 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Walter de Gruyter |
record_format | marc |
series2 | Radon series on computational and applied mathematics |
spelling | Repin, Sergey I. Verfasser aut A posteriori estimates for partial differential equations Sergey Repin Berlin Walter de Gruyter ©2008 1 Online-Ressource (xi, 316 pages) txt rdacontent c rdamedia cr rdacarrier Radon series on computational and applied mathematics 4 Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 291-311) and index Introduction -- Overview -- Poisson's equation -- Linear elliptic problems -- Elasticity -- Incompressible viscous fluids -- Generalizations -- Nonlinear problems -- Other problems This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods MATHEMATICS / Differential Equations / Partial bisacsh Differential equations, Partial fast Error analysis (Mathematics) fast A-posteriori-Abschätzung swd Partielle Differentialgleichung swd Differential equations, Partial Error analysis (Mathematics) A-posteriori-Abschätzung (DE-588)4346907-3 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s A-posteriori-Abschätzung (DE-588)4346907-3 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Repin, Sergey I. A posteriori estimates for partial differential equations MATHEMATICS / Differential Equations / Partial bisacsh Differential equations, Partial fast Error analysis (Mathematics) fast A-posteriori-Abschätzung swd Partielle Differentialgleichung swd Differential equations, Partial Error analysis (Mathematics) A-posteriori-Abschätzung (DE-588)4346907-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4346907-3 (DE-588)4044779-0 |
title | A posteriori estimates for partial differential equations |
title_auth | A posteriori estimates for partial differential equations |
title_exact_search | A posteriori estimates for partial differential equations |
title_full | A posteriori estimates for partial differential equations Sergey Repin |
title_fullStr | A posteriori estimates for partial differential equations Sergey Repin |
title_full_unstemmed | A posteriori estimates for partial differential equations Sergey Repin |
title_short | A posteriori estimates for partial differential equations |
title_sort | a posteriori estimates for partial differential equations |
topic | MATHEMATICS / Differential Equations / Partial bisacsh Differential equations, Partial fast Error analysis (Mathematics) fast A-posteriori-Abschätzung swd Partielle Differentialgleichung swd Differential equations, Partial Error analysis (Mathematics) A-posteriori-Abschätzung (DE-588)4346907-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | MATHEMATICS / Differential Equations / Partial Differential equations, Partial Error analysis (Mathematics) A-posteriori-Abschätzung Partielle Differentialgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=259717 |
work_keys_str_mv | AT repinsergeyi aposterioriestimatesforpartialdifferentialequations |