Quasi-orthogonal space-time block code:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yuen, Chau (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: London Distributed by World Scientific c2007
Schriftenreihe:Communications and signal processing (London, England) v. 2
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:Includes bibliographical references (p. 184-190) and index
Cover -- Contents -- Foreword -- 1 . Introduction of MIMO Channel and Space-Time Block Code -- 1.1 MIMO Channel for Wireless Communications -- 1.2 Transmit Diversity with Space-Time Block Code -- 1.3 Notations and Abbreviations -- 1.4 Signal Model of MIMO Channel and STBC -- 1.4.1 Signal model of MIMO channel -- 1.4.2 Signal model of STBC -- 1.5 Design Criteria and Performance Measure of STBC -- 2 . Orthogonal and Quasi-Orthogonal Space-Time Block Code -- 2.1 Orthogonal Space-Time Block Code -- 2.1.1 Benefits of 0-STBC -- 2.1.2 Background of amicable orthogonal design -- 2.1.3 Construction of 0-STBC and its rate limitation -- 2.2 Quasi-Orthogonal Space-Time Block Code -- 2.2.1 Approaching capacity with low decoding complexity -- 2.2.2 Performance optimization of QO-STBC -- 2.2.3 Remark -- 3 . Insights of QO-STBC -- 3.1 Algebraic Structure of QO-STBC -- 3.1.1 Decoding complexity of a QO-STBC -- 3.1.2 Maximal symbol-wise diversity of a QO-STBC --
- 3.2 Generalized Decoding Framework of QO-STBC -- 3.3 Impact of Constellation Rotation on the Decoding Complexity of QO-STBC -- 3.3.1 Simplified QO-STBC model with real symbols only -- 3.3.2 Decoding complexity of QO-STBC with CR -- 3.4 Group-Constrained Linear Transformation -- 3.4.1 Definition of GCLT -- 3.4.2 Optimization of GCLT parameters -- 3.4.3 Performance comparison -- 3.5 Chapter Summary -- 4 . Quasi-Orthogonal Space-Time Block Code with Minimum Decoding Complexity -- 4.1 Algebraic Structure of MDC-QOSTBC -- 4.2 Square MDC-QOSTBC Design -- 4.2.1 Definition of preferred AOD pair -- 4.2.2 Relationship between MDC-QOSTBC and AOD through preferred AOD pair -- 4.2.3 Lower bound on the code rate for square design -- 4.2.4 Construction of preferred AOD pair -- 4.3 Construction of MDC-QOSTBC from 0-STBC -- 4.3.1 Construction method -- 4.3.2 Performance optimization -- 4.3.3 Non-square MDC-QOSTBC design -- 4.4 Performance Results -- 4.5 Chapter Summary -- 5 . Differential QO-STBC --
- 5.1 DSTM Codeword Model and Design Criteria -- 5.2 Unitary DSTM Based on QO-STBC -- 5.2.1 Literature review -- 5.2.2 Signal model of unitary DSTM scheme -- 5.2.3 Double-symbol-decodable unitary DSTM -- 5.2.4 Performance comparison -- 5.2.5 Section summary -- 5.3 Quasi-Unitary DSTM Based on MDC-QOSTBC -- 5.3.1 Literature review -- 5.3.2 Signal model of quasi-unitary DSTM scheme -- 5.3.3 Single-symbol-decodable quasi-unitary DSTM -- 5.4 Chapter Summary -- 6 . Rate. Complexity and Diversity Trade-off in QO-STBC -- 6.1 QO-STBC with Rate 5 1 -- 6.1.1 Introduction -- 6.1.2 Full-rate 4Gp-QOSTBC -- 6.1.3 Rate-complexity-diversity tradeoff -- 6.1.4 Section summary -- 6.2 QO-STBC with Rate> 1 -- 6.2.1 Introduction -- 6.2.2 Code search methodology -- 6.2.3 Graph modelling and modified depth first search for implementing step (b) -- 6.2.4 Code search results -- 6.2.5 Section summary -- 6.3 Chapter Summary -- 7 . Other Developments and Applications of QO-STBC --
- 7.1 Other Developments of QO-STBC -- 7.1.1 Closed-loop QO-STBC -- 7.1.2 Concatenation of QO-STBC with error correction code -- 7.1.3 Super space-time trellis code based on QO-STBC -- 7.1.4 QO-STBC in frequency selective fading channel -- 7.2 QO-STBC in Communication Standards -- 8 . Conclusions -- APPENDIX A -- APPENDIX B -- BIBLIOGRAPHY -- INDEX.
"Quasi-Orthogonal Space-Time Block Code" presents an up-to-date, comprehensive and in-depth discussion of an important emerging class of space-time codes, called the Quasi-Orthogonal STBC (QO-STBC). Used in Multiple-Input Multiple-Output (MIMO) communication systems, they provide transmit diversity with higher code rates than the well-known orthogonal STBC (O-STBC), yet at lower decoding complexity than non-orthogonal STBC. This book will help readers gain a broad understanding of the fundamental principles as well as the state-of-the-art work in QO-STBC, thus enabling them to appreciate the roles of QO-STBC in future broadband wireless systems and to inspire further research
Beschreibung:1 Online-Ressource (xi, 194 p.)
ISBN:1860948685
1860948693
9781860948688
9781860948695

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen