The hypoelliptic Laplacian and Ray-Singer metrics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2008
|
Schriftenreihe: | Annals of mathematics studies
no. 167 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 353-357) and indexes This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th |
Beschreibung: | 1 Online-Ressource (viii, 367 pages) |
ISBN: | 1400829062 9781400829064 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043150273 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 1400829062 |c electronic bk. |9 1-4008-2906-2 | ||
020 | |a 9781400829064 |c electronic bk. |9 978-1-4008-2906-4 | ||
035 | |a (OCoLC)593214464 | ||
035 | |a (DE-599)BVBBV043150273 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.7242 |2 22 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Bismut, Jean-Michel |e Verfasser |4 aut | |
245 | 1 | 0 | |a The hypoelliptic Laplacian and Ray-Singer metrics |c Jean-Michel Bismut, Gilles Lebeau |
264 | 1 | |a Princeton |b Princeton University Press |c 2008 | |
300 | |a 1 Online-Ressource (viii, 367 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 167 | |
500 | |a Includes bibliographical references (pages 353-357) and indexes | ||
500 | |a This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th | ||
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a Differential equations, Hypoelliptic |2 fast | |
650 | 7 | |a Laplacian operator |2 fast | |
650 | 7 | |a Metric spaces |2 fast | |
650 | 7 | |a Elliptische differentiaalvergelijkingen |2 gtt | |
650 | 7 | |a Laplace-operatoren |2 gtt | |
650 | 7 | |a Metrische ruimten |2 gtt | |
650 | 7 | |a Partiële differentiaalvergelijkingen |2 gtt | |
650 | 7 | |a Tweede orde |2 gtt | |
650 | 7 | |a Hodge-Theorie |2 swd | |
650 | 7 | |a Hypoelliptischer Operator |2 swd | |
650 | 7 | |a Laplace-Operator |2 swd | |
650 | 4 | |a Differential equations, Hypoelliptic | |
650 | 4 | |a Laplacian operator | |
650 | 4 | |a Metric spaces | |
650 | 0 | 7 | |a Hypoelliptischer Operator |0 (DE-588)4138891-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Laplace-Operator |0 (DE-588)4166772-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hodge-Theorie |0 (DE-588)4135967-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laplace-Operator |0 (DE-588)4166772-4 |D s |
689 | 0 | 1 | |a Hypoelliptischer Operator |0 (DE-588)4138891-4 |D s |
689 | 0 | 2 | |a Hodge-Theorie |0 (DE-588)4135967-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lebeau, Gilles |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0-691-13731-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0-691-13732-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-691-13731-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-691-13732-2 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028574464 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175609053577216 |
---|---|
any_adam_object | |
author | Bismut, Jean-Michel |
author_facet | Bismut, Jean-Michel |
author_role | aut |
author_sort | Bismut, Jean-Michel |
author_variant | j m b jmb |
building | Verbundindex |
bvnumber | BV043150273 |
classification_rvk | SK 620 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)593214464 (DE-599)BVBBV043150273 |
dewey-full | 515/.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7242 |
dewey-search | 515/.7242 |
dewey-sort | 3515 47242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03743nmm a2200721zcb4500</leader><controlfield tag="001">BV043150273</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400829062</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-2906-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400829064</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-2906-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)593214464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043150273</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7242</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bismut, Jean-Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The hypoelliptic Laplacian and Ray-Singer metrics</subfield><subfield code="c">Jean-Michel Bismut, Gilles Lebeau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 367 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 167</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 353-357) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Hypoelliptic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laplacian operator</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metric spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elliptische differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laplace-operatoren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metrische ruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partiële differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tweede orde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laplace-Operator</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hypoelliptic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplacian operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="0">(DE-588)4138891-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laplace-Operator</subfield><subfield code="0">(DE-588)4166772-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laplace-Operator</subfield><subfield code="0">(DE-588)4166772-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="0">(DE-588)4138891-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lebeau, Gilles</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0-691-13731-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0-691-13732-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-691-13731-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-691-13732-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028574464</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043150273 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:19:00Z |
institution | BVB |
isbn | 1400829062 9781400829064 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028574464 |
oclc_num | 593214464 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (viii, 367 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Bismut, Jean-Michel Verfasser aut The hypoelliptic Laplacian and Ray-Singer metrics Jean-Michel Bismut, Gilles Lebeau Princeton Princeton University Press 2008 1 Online-Ressource (viii, 367 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 167 Includes bibliographical references (pages 353-357) and indexes This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th MATHEMATICS / Functional Analysis bisacsh MATHEMATICS / Geometry / General bisacsh Differential equations, Hypoelliptic fast Laplacian operator fast Metric spaces fast Elliptische differentiaalvergelijkingen gtt Laplace-operatoren gtt Metrische ruimten gtt Partiële differentiaalvergelijkingen gtt Tweede orde gtt Hodge-Theorie swd Hypoelliptischer Operator swd Laplace-Operator swd Differential equations, Hypoelliptic Laplacian operator Metric spaces Hypoelliptischer Operator (DE-588)4138891-4 gnd rswk-swf Laplace-Operator (DE-588)4166772-4 gnd rswk-swf Hodge-Theorie (DE-588)4135967-7 gnd rswk-swf Laplace-Operator (DE-588)4166772-4 s Hypoelliptischer Operator (DE-588)4138891-4 s Hodge-Theorie (DE-588)4135967-7 s 1\p DE-604 Lebeau, Gilles Sonstige oth Erscheint auch als Druck-Ausgabe, Paperback 0-691-13731-5 Erscheint auch als Druck-Ausgabe, Paperback 0-691-13732-3 Erscheint auch als Druck-Ausgabe, Paperback 978-0-691-13731-5 Erscheint auch als Druck-Ausgabe, Paperback 978-0-691-13732-2 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bismut, Jean-Michel The hypoelliptic Laplacian and Ray-Singer metrics MATHEMATICS / Functional Analysis bisacsh MATHEMATICS / Geometry / General bisacsh Differential equations, Hypoelliptic fast Laplacian operator fast Metric spaces fast Elliptische differentiaalvergelijkingen gtt Laplace-operatoren gtt Metrische ruimten gtt Partiële differentiaalvergelijkingen gtt Tweede orde gtt Hodge-Theorie swd Hypoelliptischer Operator swd Laplace-Operator swd Differential equations, Hypoelliptic Laplacian operator Metric spaces Hypoelliptischer Operator (DE-588)4138891-4 gnd Laplace-Operator (DE-588)4166772-4 gnd Hodge-Theorie (DE-588)4135967-7 gnd |
subject_GND | (DE-588)4138891-4 (DE-588)4166772-4 (DE-588)4135967-7 |
title | The hypoelliptic Laplacian and Ray-Singer metrics |
title_auth | The hypoelliptic Laplacian and Ray-Singer metrics |
title_exact_search | The hypoelliptic Laplacian and Ray-Singer metrics |
title_full | The hypoelliptic Laplacian and Ray-Singer metrics Jean-Michel Bismut, Gilles Lebeau |
title_fullStr | The hypoelliptic Laplacian and Ray-Singer metrics Jean-Michel Bismut, Gilles Lebeau |
title_full_unstemmed | The hypoelliptic Laplacian and Ray-Singer metrics Jean-Michel Bismut, Gilles Lebeau |
title_short | The hypoelliptic Laplacian and Ray-Singer metrics |
title_sort | the hypoelliptic laplacian and ray singer metrics |
topic | MATHEMATICS / Functional Analysis bisacsh MATHEMATICS / Geometry / General bisacsh Differential equations, Hypoelliptic fast Laplacian operator fast Metric spaces fast Elliptische differentiaalvergelijkingen gtt Laplace-operatoren gtt Metrische ruimten gtt Partiële differentiaalvergelijkingen gtt Tweede orde gtt Hodge-Theorie swd Hypoelliptischer Operator swd Laplace-Operator swd Differential equations, Hypoelliptic Laplacian operator Metric spaces Hypoelliptischer Operator (DE-588)4138891-4 gnd Laplace-Operator (DE-588)4166772-4 gnd Hodge-Theorie (DE-588)4135967-7 gnd |
topic_facet | MATHEMATICS / Functional Analysis MATHEMATICS / Geometry / General Differential equations, Hypoelliptic Laplacian operator Metric spaces Elliptische differentiaalvergelijkingen Laplace-operatoren Metrische ruimten Partiële differentiaalvergelijkingen Tweede orde Hodge-Theorie Hypoelliptischer Operator Laplace-Operator |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305771 |
work_keys_str_mv | AT bismutjeanmichel thehypoellipticlaplacianandraysingermetrics AT lebeaugilles thehypoellipticlaplacianandraysingermetrics |