Russell's hidden substitutional theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Oxford University Press
1998
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 325-332) and index Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle |
Beschreibung: | 1 Online-Ressource (xi, 337 pages) |
ISBN: | 0195116836 0195353722 0585329060 1280470291 9780195116830 9780195353723 9780585329062 9781280470295 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043149688 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1998 |||| o||u| ||||||eng d | ||
020 | |a 0195116836 |9 0-19-511683-6 | ||
020 | |a 0195353722 |9 0-19-535372-2 | ||
020 | |a 0585329060 |9 0-585-32906-0 | ||
020 | |a 1280470291 |9 1-280-47029-1 | ||
020 | |a 9780195116830 |9 978-0-19-511683-0 | ||
020 | |a 9780195353723 |9 978-0-19-535372-3 | ||
020 | |a 9780585329062 |9 978-0-585-32906-2 | ||
020 | |a 9781280470295 |9 978-1-280-47029-5 | ||
035 | |a (OCoLC)45842545 | ||
035 | |a (DE-599)BVBBV043149688 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 160/.92 |2 21 | |
100 | 1 | |a Landini, Gregory |e Verfasser |4 aut | |
245 | 1 | 0 | |a Russell's hidden substitutional theory |c Gregory Landini |
264 | 1 | |a New York |b Oxford University Press |c 1998 | |
300 | |a 1 Online-Ressource (xi, 337 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 325-332) and index | ||
500 | |a Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables | ||
500 | |a In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions | ||
500 | |a The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle | ||
600 | 1 | 7 | |a Russell, Bertrand / 1872-1970 |2 fast |
600 | 1 | 4 | |a Russell, Bertrand |d 1872-1970 |
600 | 1 | 7 | |a Russell, Bertrand |d 1872-1970 |0 (DE-588)118604287 |2 gnd |9 rswk-swf |
648 | 7 | |a 1900 - 1999 |2 fast | |
648 | 4 | |a Geschichte 1900-2000 | |
650 | 7 | |a PHILOSOPHY / Logic |2 bisacsh | |
650 | 7 | |a Propositielogica |2 gtt | |
650 | 7 | |a Wiskunde |2 gtt | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Proposition (Logic) |2 fast | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Proposition (Logic) |x History |y 20th century | |
650 | 4 | |a Logic, Symbolic and mathematical |x History |y 20th century | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Russell, Bertrand |d 1872-1970 |0 (DE-588)118604287 |D p |
689 | 0 | 1 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028573878 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175607856103424 |
---|---|
any_adam_object | |
author | Landini, Gregory |
author_facet | Landini, Gregory |
author_role | aut |
author_sort | Landini, Gregory |
author_variant | g l gl |
building | Verbundindex |
bvnumber | BV043149688 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)45842545 (DE-599)BVBBV043149688 |
dewey-full | 160/.92 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 160 - Philosophical logic |
dewey-raw | 160/.92 |
dewey-search | 160/.92 |
dewey-sort | 3160 292 |
dewey-tens | 160 - Philosophical logic |
discipline | Philosophie |
era | 1900 - 1999 fast Geschichte 1900-2000 |
era_facet | 1900 - 1999 Geschichte 1900-2000 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04924nmm a2200673zc 4500</leader><controlfield tag="001">BV043149688</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0195116836</subfield><subfield code="9">0-19-511683-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0195353722</subfield><subfield code="9">0-19-535372-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585329060</subfield><subfield code="9">0-585-32906-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280470291</subfield><subfield code="9">1-280-47029-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780195116830</subfield><subfield code="9">978-0-19-511683-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780195353723</subfield><subfield code="9">978-0-19-535372-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585329062</subfield><subfield code="9">978-0-585-32906-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280470295</subfield><subfield code="9">978-1-280-47029-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45842545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043149688</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">160/.92</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Landini, Gregory</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Russell's hidden substitutional theory</subfield><subfield code="c">Gregory Landini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 337 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 325-332) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Russell, Bertrand / 1872-1970</subfield><subfield code="2">fast</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Russell, Bertrand</subfield><subfield code="d">1872-1970</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Russell, Bertrand</subfield><subfield code="d">1872-1970</subfield><subfield code="0">(DE-588)118604287</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">1900 - 1999</subfield><subfield code="2">fast</subfield></datafield><datafield tag="648" ind1=" " ind2="4"><subfield code="a">Geschichte 1900-2000</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PHILOSOPHY / Logic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Propositielogica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proposition (Logic)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proposition (Logic)</subfield><subfield code="x">History</subfield><subfield code="y">20th century</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="x">History</subfield><subfield code="y">20th century</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Russell, Bertrand</subfield><subfield code="d">1872-1970</subfield><subfield code="0">(DE-588)118604287</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028573878</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043149688 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:59Z |
institution | BVB |
isbn | 0195116836 0195353722 0585329060 1280470291 9780195116830 9780195353723 9780585329062 9781280470295 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028573878 |
oclc_num | 45842545 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 337 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Oxford University Press |
record_format | marc |
spelling | Landini, Gregory Verfasser aut Russell's hidden substitutional theory Gregory Landini New York Oxford University Press 1998 1 Online-Ressource (xi, 337 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 325-332) and index Explores a central thread unifying Russell's thoughts on logic in two works considered at odds with each other: "Principles of Mathematics" and "Principia Mathematica". The thread states that logic is an absolutely general science and any calculus for it must embrace unrestricted variables In The Principles of Mathematics, Bertrand Russell set forth his logicist thesis that the concepts of non-applied mathematics are those of pure logic. In this revisionist interpretation. Gregory Landini explores an important central thread that unifies Russell's thoughts on logic in the two works. The heart of Landini's book is a careful presentation and exploration of Russell's largely unpublished "substitutional" theory of propositions The unrestricted variable -- Russell's logicist program -- Two conceptions of logicism: Frege and Russell -- Arithmetization -- Russell's principle of abstraction -- Logic as a science -- The logic of the principles of mathematics -- The calculus for the logic propositions -- Russell's definitions -- The theory of implication -- Quodlibet ens est unum -- Denoting concepts -- The analysis of the variable -- The new theory of the variable -- "On fundamentals" against denoting concepts -- An argument against Frege? -- The variable as primitive -- The road to substitution -- Types as logical grammar -- The logic of substitution -- Russell's original principles of substitution -- The basic logic of propositions -- Substitutional principles -- Identity -- Proofs of propositional identities -- The "no propositional functions" theory -- Substitution and definite descriptions -- Multiple substitutions -- Comprehension and identity -- Types as logical grammar -- The "no-classes" theory -- Classes as extensional propositional functions -- Complex prototypes and extensionality -- The general theory of classes -- Comparison with Principia mathematica -- The "no-relations[subscript e]" theory -- Relations-in-extension in Principia mathematica -- Relations-in-extension in the substitutional theory -- Cantor's paradox of the greatest cardinal -- The Burali-Forti paradox -- Ramification -- Les paradoxes de la logique -- Three paradoxes of propositions -- Substitutional manuscripts of April/May 1906 -- Poincare's vicious circle principle Russell, Bertrand / 1872-1970 fast Russell, Bertrand 1872-1970 Russell, Bertrand 1872-1970 (DE-588)118604287 gnd rswk-swf 1900 - 1999 fast Geschichte 1900-2000 PHILOSOPHY / Logic bisacsh Propositielogica gtt Wiskunde gtt Logic, Symbolic and mathematical fast Proposition (Logic) fast Geschichte Mathematik Proposition (Logic) History 20th century Logic, Symbolic and mathematical History 20th century Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Russell, Bertrand 1872-1970 (DE-588)118604287 p Mathematische Logik (DE-588)4037951-6 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Landini, Gregory Russell's hidden substitutional theory Russell, Bertrand / 1872-1970 fast Russell, Bertrand 1872-1970 Russell, Bertrand 1872-1970 (DE-588)118604287 gnd PHILOSOPHY / Logic bisacsh Propositielogica gtt Wiskunde gtt Logic, Symbolic and mathematical fast Proposition (Logic) fast Geschichte Mathematik Proposition (Logic) History 20th century Logic, Symbolic and mathematical History 20th century Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)118604287 (DE-588)4037951-6 |
title | Russell's hidden substitutional theory |
title_auth | Russell's hidden substitutional theory |
title_exact_search | Russell's hidden substitutional theory |
title_full | Russell's hidden substitutional theory Gregory Landini |
title_fullStr | Russell's hidden substitutional theory Gregory Landini |
title_full_unstemmed | Russell's hidden substitutional theory Gregory Landini |
title_short | Russell's hidden substitutional theory |
title_sort | russell s hidden substitutional theory |
topic | Russell, Bertrand / 1872-1970 fast Russell, Bertrand 1872-1970 Russell, Bertrand 1872-1970 (DE-588)118604287 gnd PHILOSOPHY / Logic bisacsh Propositielogica gtt Wiskunde gtt Logic, Symbolic and mathematical fast Proposition (Logic) fast Geschichte Mathematik Proposition (Logic) History 20th century Logic, Symbolic and mathematical History 20th century Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Russell, Bertrand / 1872-1970 Russell, Bertrand 1872-1970 PHILOSOPHY / Logic Propositielogica Wiskunde Logic, Symbolic and mathematical Proposition (Logic) Geschichte Mathematik Proposition (Logic) History 20th century Logic, Symbolic and mathematical History 20th century Mathematische Logik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=23531 |
work_keys_str_mv | AT landinigregory russellshiddensubstitutionaltheory |