The chaotic pendulum:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2010
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 133-138) and index 1. Pendulum equations. 1.1. Mathematical pendulum. 1.2. Period of oscillations. 1.3. Underdamped pendulum. 1.4. Nonlinear vs linear equation. 1.5. Isomorphic models. 1.6. General concepts -- 2. Deterministic chaos. 2.1. Damped, periodically driven pendulum. 2.2. Analytic methods. 2.3. Parametric periodic force. 2.4. Parametrically driven pendulum. 2.5. Periodic and constant forces. 2.6. Parametric and constant forces. 2.7. External and parametric periodic forces -- 3. Pendulum subject to a random force. 3.1. Noise. 3.2. External random force. 3.3. Constant and random forces. 3.4. External periodic and random forces. 3.5. Pendulum with multiplicative noise. 3.6. Parametric periodic and random forces. 3.7. Damped pendulum subject to a constant torque, periodic force and noise. 3.8. Overdamped pendulum -- 4. Systems with two degrees of freedom. 4.1. Spring pendulum. 4.2. Double pendulum. 4.3. Spherical pendulum -- 5. Conclusions Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics |
Beschreibung: | 1 Online-Ressource (xiii, 142 pages) |
ISBN: | 9789814322003 9789814322010 9814322008 9814322016 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043146245 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789814322003 |9 978-981-4322-00-3 | ||
020 | |a 9789814322010 |c electronic bk. |9 978-981-4322-01-0 | ||
020 | |a 9814322008 |9 981-4322-00-8 | ||
020 | |a 9814322016 |c electronic bk. |9 981-4322-01-6 | ||
035 | |a (OCoLC)740444827 | ||
035 | |a (DE-599)BVBBV043146245 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 003/.857 |2 23 | |
100 | 1 | |a Gitterman, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The chaotic pendulum |c Moshe Gitterman |
264 | 1 | |a Singapore |b World Scientific |c ©2010 | |
300 | |a 1 Online-Ressource (xiii, 142 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 | ||
500 | |a Includes bibliographical references (pages 133-138) and index | ||
500 | |a 1. Pendulum equations. 1.1. Mathematical pendulum. 1.2. Period of oscillations. 1.3. Underdamped pendulum. 1.4. Nonlinear vs linear equation. 1.5. Isomorphic models. 1.6. General concepts -- 2. Deterministic chaos. 2.1. Damped, periodically driven pendulum. 2.2. Analytic methods. 2.3. Parametric periodic force. 2.4. Parametrically driven pendulum. 2.5. Periodic and constant forces. 2.6. Parametric and constant forces. 2.7. External and parametric periodic forces -- 3. Pendulum subject to a random force. 3.1. Noise. 3.2. External random force. 3.3. Constant and random forces. 3.4. External periodic and random forces. 3.5. Pendulum with multiplicative noise. 3.6. Parametric periodic and random forces. 3.7. Damped pendulum subject to a constant torque, periodic force and noise. 3.8. Overdamped pendulum -- 4. Systems with two degrees of freedom. 4.1. Spring pendulum. 4.2. Double pendulum. 4.3. Spherical pendulum -- 5. Conclusions | ||
500 | |a Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics | ||
650 | 4 | |a Mathematics | |
650 | 7 | |a SCIENCE / Chaotic Behavior in Systems |2 bisacsh | |
650 | 7 | |a Chaotic behavior in systems |2 fast | |
650 | 7 | |a Pendulum |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Pendulum | |
650 | 4 | |a Chaotic behavior in systems | |
650 | 0 | 7 | |a Chaos |0 (DE-588)4191419-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pendelgleichung |0 (DE-588)4322855-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chaos |0 (DE-588)4191419-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Pendelgleichung |0 (DE-588)4322855-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028570436 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175600774021120 |
---|---|
any_adam_object | |
author | Gitterman, M. |
author_facet | Gitterman, M. |
author_role | aut |
author_sort | Gitterman, M. |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV043146245 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)740444827 (DE-599)BVBBV043146245 |
dewey-full | 003/.857 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.857 |
dewey-search | 003/.857 |
dewey-sort | 13 3857 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04297nmm a2200577zc 4500</leader><controlfield tag="001">BV043146245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814322003</subfield><subfield code="9">978-981-4322-00-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814322010</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4322-01-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814322008</subfield><subfield code="9">981-4322-00-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814322016</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4322-01-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740444827</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043146245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.857</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gitterman, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The chaotic pendulum</subfield><subfield code="c">Moshe Gitterman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 142 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 133-138) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Pendulum equations. 1.1. Mathematical pendulum. 1.2. Period of oscillations. 1.3. Underdamped pendulum. 1.4. Nonlinear vs linear equation. 1.5. Isomorphic models. 1.6. General concepts -- 2. Deterministic chaos. 2.1. Damped, periodically driven pendulum. 2.2. Analytic methods. 2.3. Parametric periodic force. 2.4. Parametrically driven pendulum. 2.5. Periodic and constant forces. 2.6. Parametric and constant forces. 2.7. External and parametric periodic forces -- 3. Pendulum subject to a random force. 3.1. Noise. 3.2. External random force. 3.3. Constant and random forces. 3.4. External periodic and random forces. 3.5. Pendulum with multiplicative noise. 3.6. Parametric periodic and random forces. 3.7. Damped pendulum subject to a constant torque, periodic force and noise. 3.8. Overdamped pendulum -- 4. Systems with two degrees of freedom. 4.1. Spring pendulum. 4.2. Double pendulum. 4.3. Spherical pendulum -- 5. Conclusions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chaotic Behavior in Systems</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaotic behavior in systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pendulum</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pendulum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pendelgleichung</subfield><subfield code="0">(DE-588)4322855-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Pendelgleichung</subfield><subfield code="0">(DE-588)4322855-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028570436</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043146245 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:52Z |
institution | BVB |
isbn | 9789814322003 9789814322010 9814322008 9814322016 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028570436 |
oclc_num | 740444827 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 142 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific |
record_format | marc |
spelling | Gitterman, M. Verfasser aut The chaotic pendulum Moshe Gitterman Singapore World Scientific ©2010 1 Online-Ressource (xiii, 142 pages) txt rdacontent c rdamedia cr rdacarrier Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 133-138) and index 1. Pendulum equations. 1.1. Mathematical pendulum. 1.2. Period of oscillations. 1.3. Underdamped pendulum. 1.4. Nonlinear vs linear equation. 1.5. Isomorphic models. 1.6. General concepts -- 2. Deterministic chaos. 2.1. Damped, periodically driven pendulum. 2.2. Analytic methods. 2.3. Parametric periodic force. 2.4. Parametrically driven pendulum. 2.5. Periodic and constant forces. 2.6. Parametric and constant forces. 2.7. External and parametric periodic forces -- 3. Pendulum subject to a random force. 3.1. Noise. 3.2. External random force. 3.3. Constant and random forces. 3.4. External periodic and random forces. 3.5. Pendulum with multiplicative noise. 3.6. Parametric periodic and random forces. 3.7. Damped pendulum subject to a constant torque, periodic force and noise. 3.8. Overdamped pendulum -- 4. Systems with two degrees of freedom. 4.1. Spring pendulum. 4.2. Double pendulum. 4.3. Spherical pendulum -- 5. Conclusions Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics Mathematics SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Pendulum fast Mathematik Pendulum Chaotic behavior in systems Chaos (DE-588)4191419-3 gnd rswk-swf Pendelgleichung (DE-588)4322855-0 gnd rswk-swf Chaos (DE-588)4191419-3 s 1\p DE-604 Pendelgleichung (DE-588)4322855-0 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gitterman, M. The chaotic pendulum Mathematics SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Pendulum fast Mathematik Pendulum Chaotic behavior in systems Chaos (DE-588)4191419-3 gnd Pendelgleichung (DE-588)4322855-0 gnd |
subject_GND | (DE-588)4191419-3 (DE-588)4322855-0 |
title | The chaotic pendulum |
title_auth | The chaotic pendulum |
title_exact_search | The chaotic pendulum |
title_full | The chaotic pendulum Moshe Gitterman |
title_fullStr | The chaotic pendulum Moshe Gitterman |
title_full_unstemmed | The chaotic pendulum Moshe Gitterman |
title_short | The chaotic pendulum |
title_sort | the chaotic pendulum |
topic | Mathematics SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Pendulum fast Mathematik Pendulum Chaotic behavior in systems Chaos (DE-588)4191419-3 gnd Pendelgleichung (DE-588)4322855-0 gnd |
topic_facet | Mathematics SCIENCE / Chaotic Behavior in Systems Chaotic behavior in systems Pendulum Mathematik Chaos Pendelgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374923 |
work_keys_str_mv | AT gittermanm thechaoticpendulum |