Phase transition approach to high temperature superconductivity: universal properties of cuprate superconductors
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
c2000
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 411-426) and index 1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- - 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- - 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course |
Beschreibung: | 1 Online-Ressource (x, 432 p.) |
ISBN: | 1848160135 1860942415 9781848160132 9781860942419 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043144136 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2000 |||| o||u| ||||||eng d | ||
020 | |a 1848160135 |c electronic bk. |9 1-84816-013-5 | ||
020 | |a 1860942415 |9 1-86094-241-5 | ||
020 | |a 9781848160132 |c electronic bk. |9 978-1-84816-013-2 | ||
020 | |a 9781860942419 |9 978-1-86094-241-9 | ||
035 | |a (OCoLC)827947302 | ||
035 | |a (DE-599)BVBBV043144136 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 537.6236 |2 22 | |
100 | 1 | |a Schneider, T., (Toni) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Phase transition approach to high temperature superconductivity |b universal properties of cuprate superconductors |c T. Schneider & J.M. Singer |
264 | 1 | |a London |b Imperial College Press |c c2000 | |
300 | |a 1 Online-Ressource (x, 432 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 411-426) and index | ||
500 | |a 1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- | ||
500 | |a - 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- | ||
500 | |a - 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams | ||
500 | |a The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course | ||
650 | 4 | |a Supraconducteurs à base d'oxyde de cuivre | |
650 | 4 | |a Semiconducteurs | |
650 | 4 | |a Supraconductivité | |
650 | 7 | |a Cuprate |2 swd | |
650 | 7 | |a Hochtemperatursupraleiter |2 swd | |
650 | 7 | |a Hochtemperatursupraleitung |2 swd | |
650 | 7 | |a Kritisches Phänomen |2 swd | |
650 | 7 | |a Phasenumwandlung |2 swd | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Superconductors & Superconductivity |2 bisacsh | |
650 | 7 | |a Copper oxide superconductors |2 fast | |
650 | 7 | |a High temperature superconductivity |2 fast | |
650 | 7 | |a Semiconductors |2 fast | |
650 | 4 | |a High temperature superconductivity | |
650 | 4 | |a Copper oxide superconductors | |
650 | 4 | |a Semiconductors | |
650 | 0 | 7 | |a Cuprate |0 (DE-588)4148399-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Phasenumwandlung |0 (DE-588)4132140-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kritisches Phänomen |0 (DE-588)4165788-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochtemperatursupraleiter |0 (DE-588)4220922-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochtemperatursupraleitung |0 (DE-588)4200190-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hochtemperatursupraleitung |0 (DE-588)4200190-0 |D s |
689 | 0 | 1 | |a Phasenumwandlung |0 (DE-588)4132140-6 |D s |
689 | 0 | 2 | |a Cuprate |0 (DE-588)4148399-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hochtemperatursupraleiter |0 (DE-588)4220922-5 |D s |
689 | 1 | 1 | |a Phasenumwandlung |0 (DE-588)4132140-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Hochtemperatursupraleiter |0 (DE-588)4220922-5 |D s |
689 | 2 | 1 | |a Kritisches Phänomen |0 (DE-588)4165788-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Singer, J. M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028568327 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175596546162688 |
---|---|
any_adam_object | |
author | Schneider, T., (Toni) |
author_facet | Schneider, T., (Toni) |
author_role | aut |
author_sort | Schneider, T., (Toni) |
author_variant | t t s tt tts |
building | Verbundindex |
bvnumber | BV043144136 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)827947302 (DE-599)BVBBV043144136 |
dewey-full | 537.6236 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.6236 |
dewey-search | 537.6236 |
dewey-sort | 3537.6236 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07085nmm a2200817zc 4500</leader><controlfield tag="001">BV043144136</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848160135</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-84816-013-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860942415</subfield><subfield code="9">1-86094-241-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848160132</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-013-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860942419</subfield><subfield code="9">978-1-86094-241-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)827947302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043144136</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.6236</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schneider, T., (Toni)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase transition approach to high temperature superconductivity</subfield><subfield code="b">universal properties of cuprate superconductors</subfield><subfield code="c">T. Schneider & J.M. Singer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">c2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 432 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 411-426) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supraconducteurs à base d'oxyde de cuivre</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconducteurs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supraconductivité</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cuprate</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hochtemperatursupraleiter</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hochtemperatursupraleitung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kritisches Phänomen</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Superconductors & Superconductivity</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Copper oxide superconductors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High temperature superconductivity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semiconductors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature superconductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper oxide superconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cuprate</subfield><subfield code="0">(DE-588)4148399-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kritisches Phänomen</subfield><subfield code="0">(DE-588)4165788-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochtemperatursupraleiter</subfield><subfield code="0">(DE-588)4220922-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochtemperatursupraleitung</subfield><subfield code="0">(DE-588)4200190-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hochtemperatursupraleitung</subfield><subfield code="0">(DE-588)4200190-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Cuprate</subfield><subfield code="0">(DE-588)4148399-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hochtemperatursupraleiter</subfield><subfield code="0">(DE-588)4220922-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hochtemperatursupraleiter</subfield><subfield code="0">(DE-588)4220922-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Kritisches Phänomen</subfield><subfield code="0">(DE-588)4165788-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singer, J. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028568327</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043144136 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:48Z |
institution | BVB |
isbn | 1848160135 1860942415 9781848160132 9781860942419 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028568327 |
oclc_num | 827947302 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (x, 432 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Imperial College Press |
record_format | marc |
spelling | Schneider, T., (Toni) Verfasser aut Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors T. Schneider & J.M. Singer London Imperial College Press c2000 1 Online-Ressource (x, 432 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 411-426) and index 1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- - 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- - 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course Supraconducteurs à base d'oxyde de cuivre Semiconducteurs Supraconductivité Cuprate swd Hochtemperatursupraleiter swd Hochtemperatursupraleitung swd Kritisches Phänomen swd Phasenumwandlung swd TECHNOLOGY & ENGINEERING / Superconductors & Superconductivity bisacsh Copper oxide superconductors fast High temperature superconductivity fast Semiconductors fast High temperature superconductivity Copper oxide superconductors Semiconductors Cuprate (DE-588)4148399-6 gnd rswk-swf Phasenumwandlung (DE-588)4132140-6 gnd rswk-swf Kritisches Phänomen (DE-588)4165788-3 gnd rswk-swf Hochtemperatursupraleiter (DE-588)4220922-5 gnd rswk-swf Hochtemperatursupraleitung (DE-588)4200190-0 gnd rswk-swf Hochtemperatursupraleitung (DE-588)4200190-0 s Phasenumwandlung (DE-588)4132140-6 s Cuprate (DE-588)4148399-6 s 1\p DE-604 Hochtemperatursupraleiter (DE-588)4220922-5 s 2\p DE-604 Kritisches Phänomen (DE-588)4165788-3 s 3\p DE-604 Singer, J. M. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schneider, T., (Toni) Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors Supraconducteurs à base d'oxyde de cuivre Semiconducteurs Supraconductivité Cuprate swd Hochtemperatursupraleiter swd Hochtemperatursupraleitung swd Kritisches Phänomen swd Phasenumwandlung swd TECHNOLOGY & ENGINEERING / Superconductors & Superconductivity bisacsh Copper oxide superconductors fast High temperature superconductivity fast Semiconductors fast High temperature superconductivity Copper oxide superconductors Semiconductors Cuprate (DE-588)4148399-6 gnd Phasenumwandlung (DE-588)4132140-6 gnd Kritisches Phänomen (DE-588)4165788-3 gnd Hochtemperatursupraleiter (DE-588)4220922-5 gnd Hochtemperatursupraleitung (DE-588)4200190-0 gnd |
subject_GND | (DE-588)4148399-6 (DE-588)4132140-6 (DE-588)4165788-3 (DE-588)4220922-5 (DE-588)4200190-0 |
title | Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors |
title_auth | Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors |
title_exact_search | Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors |
title_full | Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors T. Schneider & J.M. Singer |
title_fullStr | Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors T. Schneider & J.M. Singer |
title_full_unstemmed | Phase transition approach to high temperature superconductivity universal properties of cuprate superconductors T. Schneider & J.M. Singer |
title_short | Phase transition approach to high temperature superconductivity |
title_sort | phase transition approach to high temperature superconductivity universal properties of cuprate superconductors |
title_sub | universal properties of cuprate superconductors |
topic | Supraconducteurs à base d'oxyde de cuivre Semiconducteurs Supraconductivité Cuprate swd Hochtemperatursupraleiter swd Hochtemperatursupraleitung swd Kritisches Phänomen swd Phasenumwandlung swd TECHNOLOGY & ENGINEERING / Superconductors & Superconductivity bisacsh Copper oxide superconductors fast High temperature superconductivity fast Semiconductors fast High temperature superconductivity Copper oxide superconductors Semiconductors Cuprate (DE-588)4148399-6 gnd Phasenumwandlung (DE-588)4132140-6 gnd Kritisches Phänomen (DE-588)4165788-3 gnd Hochtemperatursupraleiter (DE-588)4220922-5 gnd Hochtemperatursupraleitung (DE-588)4200190-0 gnd |
topic_facet | Supraconducteurs à base d'oxyde de cuivre Semiconducteurs Supraconductivité Cuprate Hochtemperatursupraleiter Hochtemperatursupraleitung Kritisches Phänomen Phasenumwandlung TECHNOLOGY & ENGINEERING / Superconductors & Superconductivity Copper oxide superconductors High temperature superconductivity Semiconductors |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=516694 |
work_keys_str_mv | AT schneiderttoni phasetransitionapproachtohightemperaturesuperconductivityuniversalpropertiesofcupratesuperconductors AT singerjm phasetransitionapproachtohightemperaturesuperconductivityuniversalpropertiesofcupratesuperconductors |