The Goldbach conjecture:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
c2002
|
Ausgabe: | 2nd ed |
Schriftenreihe: | Series in pure mathematics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | "All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed Includes bibliographical references (p. 309-329) I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- - 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- - 21. A new mean value theorem and its applications / C.D. Pan "This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover |
Beschreibung: | 1 Online-Ressource (xi, 329 p.) |
ISBN: | 9789812381590 9789812776600 9812381597 9812776605 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043144088 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789812381590 |9 978-981-238-159-0 | ||
020 | |a 9789812776600 |c electronic bk. |9 978-981-277-660-0 | ||
020 | |a 9812381597 |9 981-238-159-7 | ||
020 | |a 9812776605 |c electronic bk. |9 981-277-660-5 | ||
035 | |a (OCoLC)827947371 | ||
035 | |a (DE-599)BVBBV043144088 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.7 |2 22 | |
245 | 1 | 0 | |a The Goldbach conjecture |c [edited by] Yuan Wang |
250 | |a 2nd ed | ||
264 | 1 | |a New Jersey |b World Scientific |c c2002 | |
300 | |a 1 Online-Ressource (xi, 329 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in pure mathematics | |
500 | |a "All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed | ||
500 | |a Includes bibliographical references (p. 309-329) | ||
500 | |a I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- | ||
500 | |a - 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- | ||
500 | |a - 21. A new mean value theorem and its applications / C.D. Pan | ||
500 | |a "This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover | ||
650 | 4 | |a Goldbach, Conjecture de | |
650 | 4 | |a Nombres, Théorie des | |
650 | 4 | |a Nombres premiers | |
650 | 7 | |a Goldbach-Problem |2 swd | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Goldbach conjecture |2 fast | |
650 | 7 | |a Number theory |2 fast | |
650 | 7 | |a Numbers, Prime |2 fast | |
650 | 4 | |a Goldbach conjecture | |
650 | 4 | |a Number theory | |
650 | 4 | |a Numbers, Prime | |
650 | 0 | 7 | |a Analytische Zahlentheorie |0 (DE-588)4001870-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Goldbach-Problem |0 (DE-588)4157823-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Analytische Zahlentheorie |0 (DE-588)4001870-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Goldbach-Problem |0 (DE-588)4157823-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Wang, Yuan |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028568279 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175596448645120 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043144088 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)827947371 (DE-599)BVBBV043144088 |
dewey-full | 512/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.7 |
dewey-search | 512/.7 |
dewey-sort | 3512 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05317nmm a2200697zc 4500</leader><controlfield tag="001">BV043144088</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812381590</subfield><subfield code="9">978-981-238-159-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812776600</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-660-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812381597</subfield><subfield code="9">981-238-159-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812776605</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-660-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)827947371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043144088</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Goldbach conjecture</subfield><subfield code="c">[edited by] Yuan Wang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 329 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in pure mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 309-329)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 21. A new mean value theorem and its applications / C.D. Pan</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Goldbach, Conjecture de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres premiers</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Goldbach-Problem</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Goldbach conjecture</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numbers, Prime</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Goldbach conjecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Prime</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Goldbach-Problem</subfield><subfield code="0">(DE-588)4157823-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Goldbach-Problem</subfield><subfield code="0">(DE-588)4157823-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028568279</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043144088 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:48Z |
institution | BVB |
isbn | 9789812381590 9789812776600 9812381597 9812776605 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028568279 |
oclc_num | 827947371 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 329 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific |
record_format | marc |
series2 | Series in pure mathematics |
spelling | The Goldbach conjecture [edited by] Yuan Wang 2nd ed New Jersey World Scientific c2002 1 Online-Ressource (xi, 329 p.) txt rdacontent c rdamedia cr rdacarrier Series in pure mathematics "All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed Includes bibliographical references (p. 309-329) I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- - 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- - 21. A new mean value theorem and its applications / C.D. Pan "This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover Goldbach, Conjecture de Nombres, Théorie des Nombres premiers Goldbach-Problem swd MATHEMATICS / Number Theory bisacsh Goldbach conjecture fast Number theory fast Numbers, Prime fast Goldbach conjecture Number theory Numbers, Prime Analytische Zahlentheorie (DE-588)4001870-2 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Goldbach-Problem (DE-588)4157823-5 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Analytische Zahlentheorie (DE-588)4001870-2 s 1\p DE-604 Goldbach-Problem (DE-588)4157823-5 s 2\p DE-604 Wang, Yuan Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | The Goldbach conjecture Goldbach, Conjecture de Nombres, Théorie des Nombres premiers Goldbach-Problem swd MATHEMATICS / Number Theory bisacsh Goldbach conjecture fast Number theory fast Numbers, Prime fast Goldbach conjecture Number theory Numbers, Prime Analytische Zahlentheorie (DE-588)4001870-2 gnd Zahlentheorie (DE-588)4067277-3 gnd Goldbach-Problem (DE-588)4157823-5 gnd |
subject_GND | (DE-588)4001870-2 (DE-588)4067277-3 (DE-588)4157823-5 |
title | The Goldbach conjecture |
title_auth | The Goldbach conjecture |
title_exact_search | The Goldbach conjecture |
title_full | The Goldbach conjecture [edited by] Yuan Wang |
title_fullStr | The Goldbach conjecture [edited by] Yuan Wang |
title_full_unstemmed | The Goldbach conjecture [edited by] Yuan Wang |
title_short | The Goldbach conjecture |
title_sort | the goldbach conjecture |
topic | Goldbach, Conjecture de Nombres, Théorie des Nombres premiers Goldbach-Problem swd MATHEMATICS / Number Theory bisacsh Goldbach conjecture fast Number theory fast Numbers, Prime fast Goldbach conjecture Number theory Numbers, Prime Analytische Zahlentheorie (DE-588)4001870-2 gnd Zahlentheorie (DE-588)4067277-3 gnd Goldbach-Problem (DE-588)4157823-5 gnd |
topic_facet | Goldbach, Conjecture de Nombres, Théorie des Nombres premiers Goldbach-Problem MATHEMATICS / Number Theory Goldbach conjecture Number theory Numbers, Prime Analytische Zahlentheorie Zahlentheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514311 |
work_keys_str_mv | AT wangyuan thegoldbachconjecture |