Kernel smoothing in MATLAB: theory and practice of Kernel smoothing
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2012
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is given to the implementation of presented methods in Matlab. All created programs are included in a special toolbox which is an integral part of the book. This toolbox contains many Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density. Specifically, methods for choosing a choice of the optimal bandwidth and a special procedure for simultaneous choice of the bandwidth, the kernel and its order are implemented. The toolbox is divided into six parts according to the chapters of the book. All scripts are included in a user interface and it is easy to manipulate with this interface. Each chapter of the book contains a detailed help for the related part of the toolbox too. This book is intended for newcomers to the field of smoothing techniques and would also be appropriate for a wide audience: advanced graduate, PhD students and researchers from both the statistical science and interface disciplines 1. Introduction. 1.1. Kernels and their properties. 1.2. Use of MATLAB toolbox. 1.3. Complements -- 2. Univariate kernel density estimation. 2.1. Basic definition. 2.2. Statistical properties of the estimate. 2.3. Choosing the shape of the kernel. 2.4. Choosing the bandwidth. 2.5. Density derivative estimation. 2.6. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 2.7. Boundary effects. 2.8. Simulations. 2.9. Application to real data. 2.10. Use of MATLAB toolbox. 2.11. Complements -- 3. Kernel estimation of a distribution function. 3.1. Basic definition. 3.2. Statistical properties of the estimate. 3.3. Choosing the bandwidth. 3.4. Boundary effects. 3.5. Application to data. 3.6. Simulations. 3.7. Application to real data. 3.8. Use of MATLAB toolbox. 3.9. Complements -- - 4. Kernel estimation and reliability assessment. 4.1. Basic definition. 4.2. Estimation of ROC curves. 4.3. Summary indices based on the ROC curve. 4.4. Other indices of reliability assessment. 4.5. Application to real data. 4.6. Use of MATLAB toolbox -- 5. Kernel estimation of a hazard function. 5.1. Basic definition. 5.2. Statistical properties of the estimate. 5.3. Choosing the bandwidth. 5.4. Description of algorithm. 5.5. Application to real data. 5.6. Use of MATLAB toolbox. 5.7. Complements -- 6. Kernel estimation of a regression function. 6.1. Basic definition. 6.2. Statistical properties of the estimate. 6.3. Choosing the bandwidth. 6.4. Estimation of the derivative of the regression function. 6.5. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 6.6. Boundary effects. 6.7. Simulations. 6.8. Application to real data. 6.9. Use of MATLAB toolbox. 6.10. Complements -- - 7. Multivariate kernel density estimation. 7.1. Basic definition. 7.2. Statistical properties of the estimate. 7.3. Bandwidth matrix selection. 7.4. A special case for bandwidth selection. 7.5. Simulations. 7.6. Application to real data. 7.7. Use of MATLAB toolbox. 7.8. Complements |
Beschreibung: | 1 Online-Ressource |
ISBN: | 1283635968 9781283635967 9789814405485 9789814405492 9814405485 9814405493 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043139192 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 1283635968 |9 1-283-63596-8 | ||
020 | |a 9781283635967 |9 978-1-283-63596-7 | ||
020 | |a 9789814405485 |9 978-981-4405-48-5 | ||
020 | |a 9789814405492 |c electronic bk. |9 978-981-4405-49-2 | ||
020 | |a 9814405485 |9 981-4405-48-5 | ||
020 | |a 9814405493 |c electronic bk. |9 981-4405-49-3 | ||
035 | |a (OCoLC)811820296 | ||
035 | |a (DE-599)BVBBV043139192 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.5 | |
245 | 1 | 0 | |a Kernel smoothing in MATLAB |b theory and practice of Kernel smoothing |c edited by Ivanka Horová, Jan Koláček, Jiří Zelinka |
264 | 1 | |a Singapore |b World Scientific |c 2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is given to the implementation of presented methods in Matlab. All created programs are included in a special toolbox which is an integral part of the book. This toolbox contains many Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density. Specifically, methods for choosing a choice of the optimal bandwidth and a special procedure for simultaneous choice of the bandwidth, the kernel and its order are implemented. The toolbox is divided into six parts according to the chapters of the book. All scripts are included in a user interface and it is easy to manipulate with this interface. Each chapter of the book contains a detailed help for the related part of the toolbox too. This book is intended for newcomers to the field of smoothing techniques and would also be appropriate for a wide audience: advanced graduate, PhD students and researchers from both the statistical science and interface disciplines | ||
500 | |a 1. Introduction. 1.1. Kernels and their properties. 1.2. Use of MATLAB toolbox. 1.3. Complements -- 2. Univariate kernel density estimation. 2.1. Basic definition. 2.2. Statistical properties of the estimate. 2.3. Choosing the shape of the kernel. 2.4. Choosing the bandwidth. 2.5. Density derivative estimation. 2.6. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 2.7. Boundary effects. 2.8. Simulations. 2.9. Application to real data. 2.10. Use of MATLAB toolbox. 2.11. Complements -- 3. Kernel estimation of a distribution function. 3.1. Basic definition. 3.2. Statistical properties of the estimate. 3.3. Choosing the bandwidth. 3.4. Boundary effects. 3.5. Application to data. 3.6. Simulations. 3.7. Application to real data. 3.8. Use of MATLAB toolbox. 3.9. Complements -- | ||
500 | |a - 4. Kernel estimation and reliability assessment. 4.1. Basic definition. 4.2. Estimation of ROC curves. 4.3. Summary indices based on the ROC curve. 4.4. Other indices of reliability assessment. 4.5. Application to real data. 4.6. Use of MATLAB toolbox -- 5. Kernel estimation of a hazard function. 5.1. Basic definition. 5.2. Statistical properties of the estimate. 5.3. Choosing the bandwidth. 5.4. Description of algorithm. 5.5. Application to real data. 5.6. Use of MATLAB toolbox. 5.7. Complements -- 6. Kernel estimation of a regression function. 6.1. Basic definition. 6.2. Statistical properties of the estimate. 6.3. Choosing the bandwidth. 6.4. Estimation of the derivative of the regression function. 6.5. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 6.6. Boundary effects. 6.7. Simulations. 6.8. Application to real data. 6.9. Use of MATLAB toolbox. 6.10. Complements -- | ||
500 | |a - 7. Multivariate kernel density estimation. 7.1. Basic definition. 7.2. Statistical properties of the estimate. 7.3. Bandwidth matrix selection. 7.4. A special case for bandwidth selection. 7.5. Simulations. 7.6. Application to real data. 7.7. Use of MATLAB toolbox. 7.8. Complements | ||
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Kernel functions |2 fast | |
650 | 7 | |a Smoothing (Statistics) |2 fast | |
650 | 4 | |a Smoothing (Statistics) | |
650 | 4 | |a Kernel functions | |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glättung |0 (DE-588)4157404-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kernel |g Informatik |0 (DE-588)4338679-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kern |g Mathematik |0 (DE-588)4163599-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kernel |g Informatik |0 (DE-588)4338679-9 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kern |g Mathematik |0 (DE-588)4163599-1 |D s |
689 | 1 | 1 | |a Glättung |0 (DE-588)4157404-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Horová, Ivanka |e Sonstige |4 oth | |
700 | 1 | |a Koláček, Jan |e Sonstige |4 oth | |
700 | 1 | |a Zelinka, Jiří |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028563383 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175586522824704 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043139192 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)811820296 (DE-599)BVBBV043139192 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06046nmm a2200661zc 4500</leader><controlfield tag="001">BV043139192</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283635968</subfield><subfield code="9">1-283-63596-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283635967</subfield><subfield code="9">978-1-283-63596-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814405485</subfield><subfield code="9">978-981-4405-48-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814405492</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4405-49-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814405485</subfield><subfield code="9">981-4405-48-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814405493</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4405-49-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)811820296</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043139192</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kernel smoothing in MATLAB</subfield><subfield code="b">theory and practice of Kernel smoothing</subfield><subfield code="c">edited by Ivanka Horová, Jan Koláček, Jiří Zelinka</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is given to the implementation of presented methods in Matlab. All created programs are included in a special toolbox which is an integral part of the book. This toolbox contains many Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density. Specifically, methods for choosing a choice of the optimal bandwidth and a special procedure for simultaneous choice of the bandwidth, the kernel and its order are implemented. The toolbox is divided into six parts according to the chapters of the book. All scripts are included in a user interface and it is easy to manipulate with this interface. Each chapter of the book contains a detailed help for the related part of the toolbox too. This book is intended for newcomers to the field of smoothing techniques and would also be appropriate for a wide audience: advanced graduate, PhD students and researchers from both the statistical science and interface disciplines</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Kernels and their properties. 1.2. Use of MATLAB toolbox. 1.3. Complements -- 2. Univariate kernel density estimation. 2.1. Basic definition. 2.2. Statistical properties of the estimate. 2.3. Choosing the shape of the kernel. 2.4. Choosing the bandwidth. 2.5. Density derivative estimation. 2.6. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 2.7. Boundary effects. 2.8. Simulations. 2.9. Application to real data. 2.10. Use of MATLAB toolbox. 2.11. Complements -- 3. Kernel estimation of a distribution function. 3.1. Basic definition. 3.2. Statistical properties of the estimate. 3.3. Choosing the bandwidth. 3.4. Boundary effects. 3.5. Application to data. 3.6. Simulations. 3.7. Application to real data. 3.8. Use of MATLAB toolbox. 3.9. Complements -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4. Kernel estimation and reliability assessment. 4.1. Basic definition. 4.2. Estimation of ROC curves. 4.3. Summary indices based on the ROC curve. 4.4. Other indices of reliability assessment. 4.5. Application to real data. 4.6. Use of MATLAB toolbox -- 5. Kernel estimation of a hazard function. 5.1. Basic definition. 5.2. Statistical properties of the estimate. 5.3. Choosing the bandwidth. 5.4. Description of algorithm. 5.5. Application to real data. 5.6. Use of MATLAB toolbox. 5.7. Complements -- 6. Kernel estimation of a regression function. 6.1. Basic definition. 6.2. Statistical properties of the estimate. 6.3. Choosing the bandwidth. 6.4. Estimation of the derivative of the regression function. 6.5. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 6.6. Boundary effects. 6.7. Simulations. 6.8. Application to real data. 6.9. Use of MATLAB toolbox. 6.10. Complements -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7. Multivariate kernel density estimation. 7.1. Basic definition. 7.2. Statistical properties of the estimate. 7.3. Bandwidth matrix selection. 7.4. A special case for bandwidth selection. 7.5. Simulations. 7.6. Application to real data. 7.7. Use of MATLAB toolbox. 7.8. Complements</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smoothing (Statistics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smoothing (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernel</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4338679-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kern</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4163599-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kernel</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4338679-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kern</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4163599-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horová, Ivanka</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koláček, Jan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zelinka, Jiří</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028563383</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043139192 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:39Z |
institution | BVB |
isbn | 1283635968 9781283635967 9789814405485 9789814405492 9814405485 9814405493 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028563383 |
oclc_num | 811820296 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific |
record_format | marc |
spelling | Kernel smoothing in MATLAB theory and practice of Kernel smoothing edited by Ivanka Horová, Jan Koláček, Jiří Zelinka Singapore World Scientific 2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is given to the implementation of presented methods in Matlab. All created programs are included in a special toolbox which is an integral part of the book. This toolbox contains many Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density. Specifically, methods for choosing a choice of the optimal bandwidth and a special procedure for simultaneous choice of the bandwidth, the kernel and its order are implemented. The toolbox is divided into six parts according to the chapters of the book. All scripts are included in a user interface and it is easy to manipulate with this interface. Each chapter of the book contains a detailed help for the related part of the toolbox too. This book is intended for newcomers to the field of smoothing techniques and would also be appropriate for a wide audience: advanced graduate, PhD students and researchers from both the statistical science and interface disciplines 1. Introduction. 1.1. Kernels and their properties. 1.2. Use of MATLAB toolbox. 1.3. Complements -- 2. Univariate kernel density estimation. 2.1. Basic definition. 2.2. Statistical properties of the estimate. 2.3. Choosing the shape of the kernel. 2.4. Choosing the bandwidth. 2.5. Density derivative estimation. 2.6. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 2.7. Boundary effects. 2.8. Simulations. 2.9. Application to real data. 2.10. Use of MATLAB toolbox. 2.11. Complements -- 3. Kernel estimation of a distribution function. 3.1. Basic definition. 3.2. Statistical properties of the estimate. 3.3. Choosing the bandwidth. 3.4. Boundary effects. 3.5. Application to data. 3.6. Simulations. 3.7. Application to real data. 3.8. Use of MATLAB toolbox. 3.9. Complements -- - 4. Kernel estimation and reliability assessment. 4.1. Basic definition. 4.2. Estimation of ROC curves. 4.3. Summary indices based on the ROC curve. 4.4. Other indices of reliability assessment. 4.5. Application to real data. 4.6. Use of MATLAB toolbox -- 5. Kernel estimation of a hazard function. 5.1. Basic definition. 5.2. Statistical properties of the estimate. 5.3. Choosing the bandwidth. 5.4. Description of algorithm. 5.5. Application to real data. 5.6. Use of MATLAB toolbox. 5.7. Complements -- 6. Kernel estimation of a regression function. 6.1. Basic definition. 6.2. Statistical properties of the estimate. 6.3. Choosing the bandwidth. 6.4. Estimation of the derivative of the regression function. 6.5. Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order. 6.6. Boundary effects. 6.7. Simulations. 6.8. Application to real data. 6.9. Use of MATLAB toolbox. 6.10. Complements -- - 7. Multivariate kernel density estimation. 7.1. Basic definition. 7.2. Statistical properties of the estimate. 7.3. Bandwidth matrix selection. 7.4. A special case for bandwidth selection. 7.5. Simulations. 7.6. Application to real data. 7.7. Use of MATLAB toolbox. 7.8. Complements MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Kernel functions fast Smoothing (Statistics) fast Smoothing (Statistics) Kernel functions MATLAB (DE-588)4329066-8 gnd rswk-swf Glättung (DE-588)4157404-7 gnd rswk-swf Kernel Informatik (DE-588)4338679-9 gnd rswk-swf Kern Mathematik (DE-588)4163599-1 gnd rswk-swf Kernel Informatik (DE-588)4338679-9 s MATLAB (DE-588)4329066-8 s 1\p DE-604 Kern Mathematik (DE-588)4163599-1 s Glättung (DE-588)4157404-7 s 2\p DE-604 Horová, Ivanka Sonstige oth Koláček, Jan Sonstige oth Zelinka, Jiří Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kernel smoothing in MATLAB theory and practice of Kernel smoothing MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Kernel functions fast Smoothing (Statistics) fast Smoothing (Statistics) Kernel functions MATLAB (DE-588)4329066-8 gnd Glättung (DE-588)4157404-7 gnd Kernel Informatik (DE-588)4338679-9 gnd Kern Mathematik (DE-588)4163599-1 gnd |
subject_GND | (DE-588)4329066-8 (DE-588)4157404-7 (DE-588)4338679-9 (DE-588)4163599-1 |
title | Kernel smoothing in MATLAB theory and practice of Kernel smoothing |
title_auth | Kernel smoothing in MATLAB theory and practice of Kernel smoothing |
title_exact_search | Kernel smoothing in MATLAB theory and practice of Kernel smoothing |
title_full | Kernel smoothing in MATLAB theory and practice of Kernel smoothing edited by Ivanka Horová, Jan Koláček, Jiří Zelinka |
title_fullStr | Kernel smoothing in MATLAB theory and practice of Kernel smoothing edited by Ivanka Horová, Jan Koláček, Jiří Zelinka |
title_full_unstemmed | Kernel smoothing in MATLAB theory and practice of Kernel smoothing edited by Ivanka Horová, Jan Koláček, Jiří Zelinka |
title_short | Kernel smoothing in MATLAB |
title_sort | kernel smoothing in matlab theory and practice of kernel smoothing |
title_sub | theory and practice of Kernel smoothing |
topic | MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Kernel functions fast Smoothing (Statistics) fast Smoothing (Statistics) Kernel functions MATLAB (DE-588)4329066-8 gnd Glättung (DE-588)4157404-7 gnd Kernel Informatik (DE-588)4338679-9 gnd Kern Mathematik (DE-588)4163599-1 gnd |
topic_facet | MATHEMATICS / Applied MATHEMATICS / Probability & Statistics / General Kernel functions Smoothing (Statistics) MATLAB Glättung Kernel Informatik Kern Mathematik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491509 |
work_keys_str_mv | AT horovaivanka kernelsmoothinginmatlabtheoryandpracticeofkernelsmoothing AT kolacekjan kernelsmoothinginmatlabtheoryandpracticeofkernelsmoothing AT zelinkajiri kernelsmoothinginmatlabtheoryandpracticeofkernelsmoothing |