Bayesian brain: probabilistic approaches to neural coding
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
MIT Press
c2007
|
Schriftenreihe: | Computational neuroscience
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index A probability primer - Kenji Doya, Shin Ishii -- - Spike coding - Adrienne Fairhall -- - Likelihood-based approaches to modeling the neural code - Jonathan Pillow -- - Combining order statistics with Bayes theorem for millisecond-by-millisecond decoding of spike trains - Barry J. Richmond, Matthew C. Wiener -- - Bayesian treatments of neuroimaging data - Will Penny, Karl Friston -- - Population codes - Alexandre Pouget, Richard S. Zemel -- - Computing with population codes - Peter Latham, Alexandre Pouget -- - Efficient coding of visual scenes by grouping and segmentation - Tai Sing Lee, Alan L. Yuille -- - Bayesian models of sensory cue integration - David C. Knill -- - The speed and accuracy of a simple perceptual decision : a mathematical primer - Michael N. Shadlen ... [et al.] -- - Neural models of Bayesian belief propagation - Rajesh P.N. Rao -- - Optimal control theory - Emanuel Todorov -- - Bayesian statistics and utility functions in sensorimotor control - Konrad P. Körding, Daniel M. Wolpert Experimental and theoretical neuroscientists use Bayesian approaches to analyse the brain mechanisms of perception decision-making, and motor control |
Beschreibung: | 1 Online-Ressource (xiii, 326 p.) |
ISBN: | 0262294184 143562467X 9780262294188 9781435624672 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043138345 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2007 |||| o||u| ||||||eng d | ||
020 | |a 0262294184 |c electronic bk. |9 0-262-29418-4 | ||
020 | |a 143562467X |c electronic bk. |9 1-4356-2467-X | ||
020 | |a 9780262294188 |c electronic bk. |9 978-0-262-29418-8 | ||
020 | |a 9781435624672 |c electronic bk. |9 978-1-4356-2467-2 | ||
035 | |a (OCoLC)191730642 | ||
035 | |a (DE-599)BVBBV043138345 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 612.8/2 |2 22 | |
245 | 1 | 0 | |a Bayesian brain |b probabilistic approaches to neural coding |c Kenji Doya ... [et al.] |
264 | 1 | |a Cambridge, Mass. |b MIT Press |c c2007 | |
300 | |a 1 Online-Ressource (xiii, 326 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Computational neuroscience | |
500 | |a Includes bibliographical references and index | ||
500 | |a A probability primer - Kenji Doya, Shin Ishii -- - Spike coding - Adrienne Fairhall -- - Likelihood-based approaches to modeling the neural code - Jonathan Pillow -- - Combining order statistics with Bayes theorem for millisecond-by-millisecond decoding of spike trains - Barry J. Richmond, Matthew C. Wiener -- - Bayesian treatments of neuroimaging data - Will Penny, Karl Friston -- - Population codes - Alexandre Pouget, Richard S. Zemel -- - Computing with population codes - Peter Latham, Alexandre Pouget -- - Efficient coding of visual scenes by grouping and segmentation - Tai Sing Lee, Alan L. Yuille -- - Bayesian models of sensory cue integration - David C. Knill -- - The speed and accuracy of a simple perceptual decision : a mathematical primer - Michael N. Shadlen ... [et al.] -- - Neural models of Bayesian belief propagation - Rajesh P.N. Rao -- - Optimal control theory - Emanuel Todorov -- - Bayesian statistics and utility functions in sensorimotor control - Konrad P. Körding, Daniel M. Wolpert | ||
500 | |a Experimental and theoretical neuroscientists use Bayesian approaches to analyse the brain mechanisms of perception decision-making, and motor control | ||
650 | 7 | |a MEDICAL / Neuroscience |2 bisacsh | |
650 | 7 | |a PSYCHOLOGY / Neuropsychology |2 bisacsh | |
650 | 7 | |a Bayesian statistical decision theory |2 fast | |
650 | 7 | |a Brain |2 fast | |
650 | 7 | |a Neurons |2 fast | |
650 | 4 | |a Brain / physiology | |
650 | 4 | |a Neurons / physiology | |
650 | 4 | |a Bayes Theorem | |
650 | 4 | |a Models, Neurological | |
650 | 4 | |a Medizin | |
650 | 4 | |a Brain | |
650 | 4 | |a Neurons | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuropsychologie |0 (DE-588)4135740-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Neuropsychologie |0 (DE-588)4135740-1 |D s |
689 | 0 | 1 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Doya, Kenji |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028562536 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175584812597248 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043138345 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)191730642 (DE-599)BVBBV043138345 |
dewey-full | 612.8/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8/2 |
dewey-search | 612.8/2 |
dewey-sort | 3612.8 12 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03767nmm a2200649zc 4500</leader><controlfield tag="001">BV043138345</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262294184</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-262-29418-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">143562467X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4356-2467-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262294188</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-262-29418-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781435624672</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4356-2467-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191730642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043138345</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian brain</subfield><subfield code="b">probabilistic approaches to neural coding</subfield><subfield code="c">Kenji Doya ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">c2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 326 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational neuroscience</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A probability primer - Kenji Doya, Shin Ishii -- - Spike coding - Adrienne Fairhall -- - Likelihood-based approaches to modeling the neural code - Jonathan Pillow -- - Combining order statistics with Bayes theorem for millisecond-by-millisecond decoding of spike trains - Barry J. Richmond, Matthew C. Wiener -- - Bayesian treatments of neuroimaging data - Will Penny, Karl Friston -- - Population codes - Alexandre Pouget, Richard S. Zemel -- - Computing with population codes - Peter Latham, Alexandre Pouget -- - Efficient coding of visual scenes by grouping and segmentation - Tai Sing Lee, Alan L. Yuille -- - Bayesian models of sensory cue integration - David C. Knill -- - The speed and accuracy of a simple perceptual decision : a mathematical primer - Michael N. Shadlen ... [et al.] -- - Neural models of Bayesian belief propagation - Rajesh P.N. Rao -- - Optimal control theory - Emanuel Todorov -- - Bayesian statistics and utility functions in sensorimotor control - Konrad P. Körding, Daniel M. Wolpert</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Experimental and theoretical neuroscientists use Bayesian approaches to analyse the brain mechanisms of perception decision-making, and motor control</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Neuroscience</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PSYCHOLOGY / Neuropsychology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brain</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurons</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain / physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurons / physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayes Theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models, Neurological</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medizin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuropsychologie</subfield><subfield code="0">(DE-588)4135740-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuropsychologie</subfield><subfield code="0">(DE-588)4135740-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doya, Kenji</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028562536</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043138345 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:37Z |
institution | BVB |
isbn | 0262294184 143562467X 9780262294188 9781435624672 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028562536 |
oclc_num | 191730642 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 326 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | MIT Press |
record_format | marc |
series2 | Computational neuroscience |
spelling | Bayesian brain probabilistic approaches to neural coding Kenji Doya ... [et al.] Cambridge, Mass. MIT Press c2007 1 Online-Ressource (xiii, 326 p.) txt rdacontent c rdamedia cr rdacarrier Computational neuroscience Includes bibliographical references and index A probability primer - Kenji Doya, Shin Ishii -- - Spike coding - Adrienne Fairhall -- - Likelihood-based approaches to modeling the neural code - Jonathan Pillow -- - Combining order statistics with Bayes theorem for millisecond-by-millisecond decoding of spike trains - Barry J. Richmond, Matthew C. Wiener -- - Bayesian treatments of neuroimaging data - Will Penny, Karl Friston -- - Population codes - Alexandre Pouget, Richard S. Zemel -- - Computing with population codes - Peter Latham, Alexandre Pouget -- - Efficient coding of visual scenes by grouping and segmentation - Tai Sing Lee, Alan L. Yuille -- - Bayesian models of sensory cue integration - David C. Knill -- - The speed and accuracy of a simple perceptual decision : a mathematical primer - Michael N. Shadlen ... [et al.] -- - Neural models of Bayesian belief propagation - Rajesh P.N. Rao -- - Optimal control theory - Emanuel Todorov -- - Bayesian statistics and utility functions in sensorimotor control - Konrad P. Körding, Daniel M. Wolpert Experimental and theoretical neuroscientists use Bayesian approaches to analyse the brain mechanisms of perception decision-making, and motor control MEDICAL / Neuroscience bisacsh PSYCHOLOGY / Neuropsychology bisacsh Bayesian statistical decision theory fast Brain fast Neurons fast Brain / physiology Neurons / physiology Bayes Theorem Models, Neurological Medizin Brain Neurons Bayesian statistical decision theory Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Neuropsychologie (DE-588)4135740-1 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Neuropsychologie (DE-588)4135740-1 s Bayes-Verfahren (DE-588)4204326-8 s 2\p DE-604 Doya, Kenji Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bayesian brain probabilistic approaches to neural coding MEDICAL / Neuroscience bisacsh PSYCHOLOGY / Neuropsychology bisacsh Bayesian statistical decision theory fast Brain fast Neurons fast Brain / physiology Neurons / physiology Bayes Theorem Models, Neurological Medizin Brain Neurons Bayesian statistical decision theory Bayes-Verfahren (DE-588)4204326-8 gnd Neuropsychologie (DE-588)4135740-1 gnd |
subject_GND | (DE-588)4204326-8 (DE-588)4135740-1 (DE-588)4143413-4 |
title | Bayesian brain probabilistic approaches to neural coding |
title_auth | Bayesian brain probabilistic approaches to neural coding |
title_exact_search | Bayesian brain probabilistic approaches to neural coding |
title_full | Bayesian brain probabilistic approaches to neural coding Kenji Doya ... [et al.] |
title_fullStr | Bayesian brain probabilistic approaches to neural coding Kenji Doya ... [et al.] |
title_full_unstemmed | Bayesian brain probabilistic approaches to neural coding Kenji Doya ... [et al.] |
title_short | Bayesian brain |
title_sort | bayesian brain probabilistic approaches to neural coding |
title_sub | probabilistic approaches to neural coding |
topic | MEDICAL / Neuroscience bisacsh PSYCHOLOGY / Neuropsychology bisacsh Bayesian statistical decision theory fast Brain fast Neurons fast Brain / physiology Neurons / physiology Bayes Theorem Models, Neurological Medizin Brain Neurons Bayesian statistical decision theory Bayes-Verfahren (DE-588)4204326-8 gnd Neuropsychologie (DE-588)4135740-1 gnd |
topic_facet | MEDICAL / Neuroscience PSYCHOLOGY / Neuropsychology Bayesian statistical decision theory Brain Neurons Brain / physiology Neurons / physiology Bayes Theorem Models, Neurological Medizin Bayes-Verfahren Neuropsychologie Aufsatzsammlung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185904 |
work_keys_str_mv | AT doyakenji bayesianbrainprobabilisticapproachestoneuralcoding |