Twisted L-functions and monodromy:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2002
|
Schriftenreihe: | Annals of mathematics studies
no. 150 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 235-239) and index Cover; Title Page; Copyright Page; Table of Contents; Introduction; Part I: Background Material; Appendix to Chapter 1: A Result of Zalesskii; Chapter 2: Lefschetz Pencils, Especially on Cur; Chapter 3: Induction; Chapter 4: Middle Convolution; Part II: Twist Sheaves, over an Algebraically Closed Field; Chapter 5: Twist Sheaves and Their Monodromy; Part III: Twist Sheaves, over a Finite Field; Chapter 6: Dependence on Parameters; Chapter 7: Diophantine Applications over a Finite Field; Chapter 8: Average Order of Zero in Twist Families For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves?Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the f |
Beschreibung: | 1 Online-Ressource (viii, 249 pages) |
ISBN: | 0691091501 069109151X 1400824885 9780691091501 9780691091518 9781400824885 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043137082 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 0691091501 |9 0-691-09150-1 | ||
020 | |a 069109151X |9 0-691-09151-X | ||
020 | |a 1400824885 |c electronic bk. |9 1-4008-2488-5 | ||
020 | |a 9780691091501 |9 978-0-691-09150-1 | ||
020 | |a 9780691091518 |9 978-0-691-09151-8 | ||
020 | |a 9781400824885 |c electronic bk. |9 978-1-4008-2488-5 | ||
035 | |a (OCoLC)670429607 | ||
035 | |a (DE-599)BVBBV043137082 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.74 |2 22 | |
100 | 1 | |a Katz, Nicholas M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Twisted L-functions and monodromy |c by Nicholas M. Katz |
264 | 1 | |a Princeton |b Princeton University Press |c 2002 | |
300 | |a 1 Online-Ressource (viii, 249 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 150 | |
500 | |a Includes bibliographical references (pages 235-239) and index | ||
500 | |a Cover; Title Page; Copyright Page; Table of Contents; Introduction; Part I: Background Material; Appendix to Chapter 1: A Result of Zalesskii; Chapter 2: Lefschetz Pencils, Especially on Cur; Chapter 3: Induction; Chapter 4: Middle Convolution; Part II: Twist Sheaves, over an Algebraically Closed Field; Chapter 5: Twist Sheaves and Their Monodromy; Part III: Twist Sheaves, over a Finite Field; Chapter 6: Dependence on Parameters; Chapter 7: Diophantine Applications over a Finite Field; Chapter 8: Average Order of Zero in Twist Families | ||
500 | |a For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves?Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the f | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fonctions L. | |
650 | 4 | |a Groupes de monodromie | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Group Theory |2 bisacsh | |
650 | 7 | |a L-functions |2 fast | |
650 | 7 | |a Monodromy groups |2 fast | |
650 | 7 | |a L-functies |2 gtt | |
650 | 7 | |a Monodromie |2 gtt | |
650 | 4 | |a Mathematik | |
650 | 4 | |a L-functions | |
650 | 4 | |a Monodromy groups | |
650 | 0 | 7 | |a L-Funktion |0 (DE-588)4137026-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monodromie |0 (DE-588)4277667-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a L-Funktion |0 (DE-588)4137026-0 |D s |
689 | 0 | 1 | |a Monodromie |0 (DE-588)4277667-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028561273 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175582182768640 |
---|---|
any_adam_object | |
author | Katz, Nicholas M. |
author_facet | Katz, Nicholas M. |
author_role | aut |
author_sort | Katz, Nicholas M. |
author_variant | n m k nm nmk |
building | Verbundindex |
bvnumber | BV043137082 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)670429607 (DE-599)BVBBV043137082 |
dewey-full | 512/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.74 |
dewey-search | 512/.74 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03587nmm a2200637zcb4500</leader><controlfield tag="001">BV043137082</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691091501</subfield><subfield code="9">0-691-09150-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">069109151X</subfield><subfield code="9">0-691-09151-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400824885</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-2488-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691091501</subfield><subfield code="9">978-0-691-09150-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691091518</subfield><subfield code="9">978-0-691-09151-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400824885</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-2488-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)670429607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043137082</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Katz, Nicholas M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Twisted L-functions and monodromy</subfield><subfield code="c">by Nicholas M. Katz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 249 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 150</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 235-239) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title Page; Copyright Page; Table of Contents; Introduction; Part I: Background Material; Appendix to Chapter 1: A Result of Zalesskii; Chapter 2: Lefschetz Pencils, Especially on Cur; Chapter 3: Induction; Chapter 4: Middle Convolution; Part II: Twist Sheaves, over an Algebraically Closed Field; Chapter 5: Twist Sheaves and Their Monodromy; Part III: Twist Sheaves, over a Finite Field; Chapter 6: Dependence on Parameters; Chapter 7: Diophantine Applications over a Finite Field; Chapter 8: Average Order of Zero in Twist Families</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves?Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the f</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes de monodromie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">L-functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monodromy groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">L-functies</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monodromie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monodromy groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monodromie</subfield><subfield code="0">(DE-588)4277667-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Monodromie</subfield><subfield code="0">(DE-588)4277667-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028561273</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043137082 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:34Z |
institution | BVB |
isbn | 0691091501 069109151X 1400824885 9780691091501 9780691091518 9781400824885 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028561273 |
oclc_num | 670429607 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (viii, 249 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Katz, Nicholas M. Verfasser aut Twisted L-functions and monodromy by Nicholas M. Katz Princeton Princeton University Press 2002 1 Online-Ressource (viii, 249 pages) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 150 Includes bibliographical references (pages 235-239) and index Cover; Title Page; Copyright Page; Table of Contents; Introduction; Part I: Background Material; Appendix to Chapter 1: A Result of Zalesskii; Chapter 2: Lefschetz Pencils, Especially on Cur; Chapter 3: Induction; Chapter 4: Middle Convolution; Part II: Twist Sheaves, over an Algebraically Closed Field; Chapter 5: Twist Sheaves and Their Monodromy; Part III: Twist Sheaves, over a Finite Field; Chapter 6: Dependence on Parameters; Chapter 7: Diophantine Applications over a Finite Field; Chapter 8: Average Order of Zero in Twist Families For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves?Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the f Mathematics Fonctions L. Groupes de monodromie MATHEMATICS / Number Theory bisacsh MATHEMATICS / Group Theory bisacsh L-functions fast Monodromy groups fast L-functies gtt Monodromie gtt Mathematik L-functions Monodromy groups L-Funktion (DE-588)4137026-0 gnd rswk-swf Monodromie (DE-588)4277667-3 gnd rswk-swf L-Funktion (DE-588)4137026-0 s Monodromie (DE-588)4277667-3 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Katz, Nicholas M. Twisted L-functions and monodromy Mathematics Fonctions L. Groupes de monodromie MATHEMATICS / Number Theory bisacsh MATHEMATICS / Group Theory bisacsh L-functions fast Monodromy groups fast L-functies gtt Monodromie gtt Mathematik L-functions Monodromy groups L-Funktion (DE-588)4137026-0 gnd Monodromie (DE-588)4277667-3 gnd |
subject_GND | (DE-588)4137026-0 (DE-588)4277667-3 |
title | Twisted L-functions and monodromy |
title_auth | Twisted L-functions and monodromy |
title_exact_search | Twisted L-functions and monodromy |
title_full | Twisted L-functions and monodromy by Nicholas M. Katz |
title_fullStr | Twisted L-functions and monodromy by Nicholas M. Katz |
title_full_unstemmed | Twisted L-functions and monodromy by Nicholas M. Katz |
title_short | Twisted L-functions and monodromy |
title_sort | twisted l functions and monodromy |
topic | Mathematics Fonctions L. Groupes de monodromie MATHEMATICS / Number Theory bisacsh MATHEMATICS / Group Theory bisacsh L-functions fast Monodromy groups fast L-functies gtt Monodromie gtt Mathematik L-functions Monodromy groups L-Funktion (DE-588)4137026-0 gnd Monodromie (DE-588)4277667-3 gnd |
topic_facet | Mathematics Fonctions L. Groupes de monodromie MATHEMATICS / Number Theory MATHEMATICS / Group Theory L-functions Monodromy groups L-functies Monodromie Mathematik L-Funktion |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340196 |
work_keys_str_mv | AT katznicholasm twistedlfunctionsandmonodromy |