Affine Bernstein problems and Monge-Ampère equations:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
©2010
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 173-177) and index Basic tools -- Local equiaffine hypersurfaces -- Local relative hypersurfaces -- The theorem of Jörgens-Calabi-Pogorelov -- Affine maximal hypersurfaces -- Hypersurfaces with constant affine mean curvature In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con |
Beschreibung: | 1 Online-Ressource (xii, 180 pages) |
ISBN: | 9789812814166 9789812814173 9812814167 9812814175 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043136980 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789812814166 |9 978-981-281-416-6 | ||
020 | |a 9789812814173 |c electronic bk. |9 978-981-281-417-3 | ||
020 | |a 9812814167 |9 981-281-416-7 | ||
020 | |a 9812814175 |c electronic bk. |9 981-281-417-5 | ||
035 | |a (OCoLC)670429445 | ||
035 | |a (DE-599)BVBBV043136980 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.36 |2 22 | |
245 | 1 | 0 | |a Affine Bernstein problems and Monge-Ampère equations |c An-Min Li [and others] |
264 | 1 | |a New Jersey |b World Scientific |c ©2010 | |
300 | |a 1 Online-Ressource (xii, 180 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 173-177) and index | ||
500 | |a Basic tools -- Local equiaffine hypersurfaces -- Local relative hypersurfaces -- The theorem of Jörgens-Calabi-Pogorelov -- Affine maximal hypersurfaces -- Hypersurfaces with constant affine mean curvature | ||
500 | |a In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con | ||
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Geometry / Differential |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Affine differential geometry | |
650 | 4 | |a Monge-Ampère equations | |
650 | 0 | 7 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monge-Ampère-Differentialgleichung |0 (DE-588)4253327-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Monge-Ampère-Differentialgleichung |0 (DE-588)4253327-2 |D s |
689 | 0 | 1 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Li, An-Min |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028561171 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175581970956288 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043136980 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)670429445 (DE-599)BVBBV043136980 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02978nmm a2200517zc 4500</leader><controlfield tag="001">BV043136980</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812814166</subfield><subfield code="9">978-981-281-416-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812814173</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-417-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812814167</subfield><subfield code="9">981-281-416-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812814175</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-417-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)670429445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043136980</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine Bernstein problems and Monge-Ampère equations</subfield><subfield code="c">An-Min Li [and others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 180 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 173-177) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Basic tools -- Local equiaffine hypersurfaces -- Local relative hypersurfaces -- The theorem of Jörgens-Calabi-Pogorelov -- Affine maximal hypersurfaces -- Hypersurfaces with constant affine mean curvature</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Affine differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monge-Ampère equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monge-Ampère-Differentialgleichung</subfield><subfield code="0">(DE-588)4253327-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monge-Ampère-Differentialgleichung</subfield><subfield code="0">(DE-588)4253327-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, An-Min</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028561171</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043136980 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:34Z |
institution | BVB |
isbn | 9789812814166 9789812814173 9812814167 9812814175 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028561171 |
oclc_num | 670429445 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 180 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific |
record_format | marc |
spelling | Affine Bernstein problems and Monge-Ampère equations An-Min Li [and others] New Jersey World Scientific ©2010 1 Online-Ressource (xii, 180 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 173-177) and index Basic tools -- Local equiaffine hypersurfaces -- Local relative hypersurfaces -- The theorem of Jörgens-Calabi-Pogorelov -- Affine maximal hypersurfaces -- Hypersurfaces with constant affine mean curvature In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con Mathematics MATHEMATICS / Geometry / Differential bisacsh Mathematik Affine differential geometry Monge-Ampère equations Globale Differentialgeometrie (DE-588)4021286-5 gnd rswk-swf Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd rswk-swf Monge-Ampère-Differentialgleichung (DE-588)4253327-2 s Globale Differentialgeometrie (DE-588)4021286-5 s 1\p DE-604 Li, An-Min Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Affine Bernstein problems and Monge-Ampère equations Mathematics MATHEMATICS / Geometry / Differential bisacsh Mathematik Affine differential geometry Monge-Ampère equations Globale Differentialgeometrie (DE-588)4021286-5 gnd Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd |
subject_GND | (DE-588)4021286-5 (DE-588)4253327-2 |
title | Affine Bernstein problems and Monge-Ampère equations |
title_auth | Affine Bernstein problems and Monge-Ampère equations |
title_exact_search | Affine Bernstein problems and Monge-Ampère equations |
title_full | Affine Bernstein problems and Monge-Ampère equations An-Min Li [and others] |
title_fullStr | Affine Bernstein problems and Monge-Ampère equations An-Min Li [and others] |
title_full_unstemmed | Affine Bernstein problems and Monge-Ampère equations An-Min Li [and others] |
title_short | Affine Bernstein problems and Monge-Ampère equations |
title_sort | affine bernstein problems and monge ampere equations |
topic | Mathematics MATHEMATICS / Geometry / Differential bisacsh Mathematik Affine differential geometry Monge-Ampère equations Globale Differentialgeometrie (DE-588)4021286-5 gnd Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd |
topic_facet | Mathematics MATHEMATICS / Geometry / Differential Mathematik Affine differential geometry Monge-Ampère equations Globale Differentialgeometrie Monge-Ampère-Differentialgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340794 |
work_keys_str_mv | AT lianmin affinebernsteinproblemsandmongeampereequations |