Polymer viscoelasticity: basics, molecular theories, and experiments
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2003
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Preface -- 1. Conformation of polymer chains. 1.1. Introduction. 1.2. Probability distribution functions, moments and characteristic functions. 1.3. A central limit theorem. 1.4. The freely jointed chain model. 1.5. Distribution of the end-to-end vector. 1.6. The Gaussian chain. Appendix 1A. The Dirac delta function. References -- 2. Rubber elasticity. 2.1. Introduction. 2.2. Entropy and rubber elasticity. 2.3. Molecular theory for rubber elasticity. References -- 3. Polymer chain dynamics. 3.1. Introduction. 3.2. The Smoluchowski equation. 3.3. The Langevin equation. 3.4. The Rouse model. 3.5. Diffusion motion of the Rouse chain. 3.6. The Rouse normal modes of motion. Appendix 3A. Eigenvalues and eigenvectors of the Rouse matrix. Appendix 3B. The Langevin equation of a particle in a harmonic potential. Appendix 3C. The continuous Rouse model. References -- - 4. Linear viscoelasticity. 4.1. Introduction. 4.2. Maxwell equation. 4.3. Boltzmann's superposition principle. 4.4. Relaxation modulus. 4.5. Steady-state shear flow. 4.6. Dynamic-mechanical spectroscopy. 4.7. Steady-state compliance. References -- 5. Stress and strain. 5.1. Stress. 5.2. Finite strain. 5.3. A neo-Hookean material. 5.4. A Newtonian fluid. Appendix 5A. Tensor operations. References -- 6. Molecular theory of polymer viscoelasticity -- elastic dumbbell model. 6.1. Introduction. 6.2. The Smoluchowski equation for an elastic dumbbell. 6.3. Rheological constitutive equation of the elastic dumbbell model. Appendix 6A. Codeformational (convected) time derivative. References -- 7. Molecular theory of polymer viscoelasticity -- the Rouse model . 7.1. The Smoluchowski equation of the Rouse model. 7.2. Rheological constitutive equation of the Rouse model. Appendix 7A. Eigenvalues and the inverse of the Rouse matrix. References -- 8. Molecular theory of polymer viscoelasticity -- - entanglement and the Doi-Edwards (reptation) model. 8.1. Introduction. 8.2. The primitive chain. 8.3. Diffusion motion. 8.4. Relaxation modulus. 8.5. Relaxation of stress by reputation. Appendix 8A. -- Tension in a gaussian chain between two fixed points. Appendix 8B. -- Equivalent expressions for rubber elasticity. References 9. Molecular theory of polymer viscoelasticity -- processes in the linear relaxation modulus. 9.1. Intramolecular processes. 9.2. Contour length fluctuation of the primitive chain. 9.3. Relaxation processes before t [symbol] Teq. 9.4. Universality of the G(t) line shape. 9.5. Zero-shear viscosity and steady-state compliance. Appendix 9A. Contour length fluctuations of the primitive chain. Appendix 9B. Rouse motions in an entanglement strand. References -- 10. Comparison of theory and experiment in linear viscoelasticity and diffusion. 10.1. Effects of the molecular-weight distribution of the sample. 10.2. Analysis of the G(t) line shape. 10.3. Zero-shear viscosity and steady-state compliance. 10.4. Viscoelasticity and diffusion. References -- 11. Concentration dependence of entanglement, onset of entanglement, and tube dilation. 11.1. Introduction. 11.2. Entanglement region. 11.3. Entanglement-free region and onset of entanglement. 11.4. Tube dilation. Appendix 11A. Basic form of the blending law in a binary blend. References -- 12. Molecular theory of polymer viscoelasticity -- processes in the nonlinear relaxation modulus. 12.1. Chain-tension relaxation. 12.2. Comparison of theory and experiment. References -- 13. Number of entanglement strands per cubed entanglement distance. 13.1. Introduction. 13.2. Number of entanglement strands per cubed entanglement distance. 13.3. Concentration dependence of n[symbol]. 13.4. Packing of polymer chains. 13.5. Some comments. References -- Index In this book, the studies of the Rouse, Doi-Edwards, and extended reptation theories are developed in a consistent manner from a basic level and discussed in detail. Viscoelastic properties of nearly monodisperse linear flexible polymers in both the entanglement and entanglement-free regions are analyzed quantitatively in terms of the molecular theories |
Beschreibung: | 1 Online-Ressource (xii, 251 p.) |
ISBN: | 9789812383945 9789812795144 9812383948 9812795146 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043133168 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789812383945 |9 978-981-238-394-5 | ||
020 | |a 9789812795144 |c electronic bk. |9 978-981-279-514-4 | ||
020 | |a 9812383948 |9 981-238-394-8 | ||
020 | |a 9812795146 |c electronic bk. |9 981-279-514-6 | ||
035 | |a (OCoLC)262846990 | ||
035 | |a (DE-599)BVBBV043133168 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 620.19204232 |2 22 | |
084 | |a UV 4100 |0 (DE-625)146898: |2 rvk | ||
100 | 1 | |a Lin, Y.-H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Polymer viscoelasticity |b basics, molecular theories, and experiments |c Yn-Hwang Lin |
264 | 1 | |a Singapore |b World Scientific |c 2003 | |
300 | |a 1 Online-Ressource (xii, 251 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Preface -- 1. Conformation of polymer chains. 1.1. Introduction. 1.2. Probability distribution functions, moments and characteristic functions. 1.3. A central limit theorem. 1.4. The freely jointed chain model. 1.5. Distribution of the end-to-end vector. 1.6. The Gaussian chain. Appendix 1A. The Dirac delta function. References -- 2. Rubber elasticity. 2.1. Introduction. 2.2. Entropy and rubber elasticity. 2.3. Molecular theory for rubber elasticity. References -- 3. Polymer chain dynamics. 3.1. Introduction. 3.2. The Smoluchowski equation. 3.3. The Langevin equation. 3.4. The Rouse model. 3.5. Diffusion motion of the Rouse chain. 3.6. The Rouse normal modes of motion. Appendix 3A. Eigenvalues and eigenvectors of the Rouse matrix. Appendix 3B. The Langevin equation of a particle in a harmonic potential. Appendix 3C. The continuous Rouse model. References -- | ||
500 | |a - 4. Linear viscoelasticity. 4.1. Introduction. 4.2. Maxwell equation. 4.3. Boltzmann's superposition principle. 4.4. Relaxation modulus. 4.5. Steady-state shear flow. 4.6. Dynamic-mechanical spectroscopy. 4.7. Steady-state compliance. References -- 5. Stress and strain. 5.1. Stress. 5.2. Finite strain. 5.3. A neo-Hookean material. 5.4. A Newtonian fluid. Appendix 5A. Tensor operations. References -- 6. Molecular theory of polymer viscoelasticity -- elastic dumbbell model. 6.1. Introduction. 6.2. The Smoluchowski equation for an elastic dumbbell. 6.3. Rheological constitutive equation of the elastic dumbbell model. Appendix 6A. Codeformational (convected) time derivative. References -- 7. Molecular theory of polymer viscoelasticity -- the Rouse model . 7.1. The Smoluchowski equation of the Rouse model. 7.2. Rheological constitutive equation of the Rouse model. Appendix 7A. Eigenvalues and the inverse of the Rouse matrix. References -- 8. Molecular theory of polymer viscoelasticity -- | ||
500 | |a - entanglement and the Doi-Edwards (reptation) model. 8.1. Introduction. 8.2. The primitive chain. 8.3. Diffusion motion. 8.4. Relaxation modulus. 8.5. Relaxation of stress by reputation. Appendix 8A. -- Tension in a gaussian chain between two fixed points. Appendix 8B. -- Equivalent expressions for rubber elasticity. References | ||
500 | |a 9. Molecular theory of polymer viscoelasticity -- processes in the linear relaxation modulus. 9.1. Intramolecular processes. 9.2. Contour length fluctuation of the primitive chain. 9.3. Relaxation processes before t [symbol] Teq. 9.4. Universality of the G(t) line shape. 9.5. Zero-shear viscosity and steady-state compliance. Appendix 9A. Contour length fluctuations of the primitive chain. Appendix 9B. Rouse motions in an entanglement strand. References -- 10. Comparison of theory and experiment in linear viscoelasticity and diffusion. 10.1. Effects of the molecular-weight distribution of the sample. 10.2. Analysis of the G(t) line shape. 10.3. Zero-shear viscosity and steady-state compliance. 10.4. Viscoelasticity and diffusion. References -- 11. Concentration dependence of entanglement, onset of entanglement, and tube dilation. 11.1. Introduction. 11.2. Entanglement region. 11.3. Entanglement-free region and onset of entanglement. 11.4. Tube dilation. Appendix 11A. Basic form of the blending law in a binary blend. References -- 12. Molecular theory of polymer viscoelasticity -- processes in the nonlinear relaxation modulus. 12.1. Chain-tension relaxation. 12.2. Comparison of theory and experiment. References -- 13. Number of entanglement strands per cubed entanglement distance. 13.1. Introduction. 13.2. Number of entanglement strands per cubed entanglement distance. 13.3. Concentration dependence of n[symbol]. 13.4. Packing of polymer chains. 13.5. Some comments. References -- Index | ||
500 | |a In this book, the studies of the Rouse, Doi-Edwards, and extended reptation theories are developed in a consistent manner from a basic level and discussed in detail. Viscoelastic properties of nearly monodisperse linear flexible polymers in both the entanglement and entanglement-free regions are analyzed quantitatively in terms of the molecular theories | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Material Science |2 bisacsh | |
650 | 7 | |a Polymeren |2 gtt | |
650 | 7 | |a Visco-elasticiteit |2 gtt | |
650 | 7 | |a Polymers / Viscosity |2 fast | |
650 | 7 | |a Viscoelasticity |2 fast | |
650 | 4 | |a Polymers |x Viscosity | |
650 | 4 | |a Viscoelasticity | |
650 | 0 | 7 | |a Viskoelastizität |0 (DE-588)4063621-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polymere |0 (DE-588)4046699-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 0 | 1 | |a Viskoelastizität |0 (DE-588)4063621-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 981-238-417-0 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028557359 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175574543892480 |
---|---|
any_adam_object | |
author | Lin, Y.-H |
author_facet | Lin, Y.-H |
author_role | aut |
author_sort | Lin, Y.-H |
author_variant | y h l yhl |
building | Verbundindex |
bvnumber | BV043133168 |
classification_rvk | UV 4100 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)262846990 (DE-599)BVBBV043133168 |
dewey-full | 620.19204232 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.19204232 |
dewey-search | 620.19204232 |
dewey-sort | 3620.19204232 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06411nmm a2200601zc 4500</leader><controlfield tag="001">BV043133168</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812383945</subfield><subfield code="9">978-981-238-394-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795144</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-514-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812383948</subfield><subfield code="9">981-238-394-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812795146</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-279-514-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)262846990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043133168</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.19204232</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 4100</subfield><subfield code="0">(DE-625)146898:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Y.-H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polymer viscoelasticity</subfield><subfield code="b">basics, molecular theories, and experiments</subfield><subfield code="c">Yn-Hwang Lin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 251 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface -- 1. Conformation of polymer chains. 1.1. Introduction. 1.2. Probability distribution functions, moments and characteristic functions. 1.3. A central limit theorem. 1.4. The freely jointed chain model. 1.5. Distribution of the end-to-end vector. 1.6. The Gaussian chain. Appendix 1A. The Dirac delta function. References -- 2. Rubber elasticity. 2.1. Introduction. 2.2. Entropy and rubber elasticity. 2.3. Molecular theory for rubber elasticity. References -- 3. Polymer chain dynamics. 3.1. Introduction. 3.2. The Smoluchowski equation. 3.3. The Langevin equation. 3.4. The Rouse model. 3.5. Diffusion motion of the Rouse chain. 3.6. The Rouse normal modes of motion. Appendix 3A. Eigenvalues and eigenvectors of the Rouse matrix. Appendix 3B. The Langevin equation of a particle in a harmonic potential. Appendix 3C. The continuous Rouse model. References -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4. Linear viscoelasticity. 4.1. Introduction. 4.2. Maxwell equation. 4.3. Boltzmann's superposition principle. 4.4. Relaxation modulus. 4.5. Steady-state shear flow. 4.6. Dynamic-mechanical spectroscopy. 4.7. Steady-state compliance. References -- 5. Stress and strain. 5.1. Stress. 5.2. Finite strain. 5.3. A neo-Hookean material. 5.4. A Newtonian fluid. Appendix 5A. Tensor operations. References -- 6. Molecular theory of polymer viscoelasticity -- elastic dumbbell model. 6.1. Introduction. 6.2. The Smoluchowski equation for an elastic dumbbell. 6.3. Rheological constitutive equation of the elastic dumbbell model. Appendix 6A. Codeformational (convected) time derivative. References -- 7. Molecular theory of polymer viscoelasticity -- the Rouse model . 7.1. The Smoluchowski equation of the Rouse model. 7.2. Rheological constitutive equation of the Rouse model. Appendix 7A. Eigenvalues and the inverse of the Rouse matrix. References -- 8. Molecular theory of polymer viscoelasticity -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - entanglement and the Doi-Edwards (reptation) model. 8.1. Introduction. 8.2. The primitive chain. 8.3. Diffusion motion. 8.4. Relaxation modulus. 8.5. Relaxation of stress by reputation. Appendix 8A. -- Tension in a gaussian chain between two fixed points. Appendix 8B. -- Equivalent expressions for rubber elasticity. References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9. Molecular theory of polymer viscoelasticity -- processes in the linear relaxation modulus. 9.1. Intramolecular processes. 9.2. Contour length fluctuation of the primitive chain. 9.3. Relaxation processes before t [symbol] Teq. 9.4. Universality of the G(t) line shape. 9.5. Zero-shear viscosity and steady-state compliance. Appendix 9A. Contour length fluctuations of the primitive chain. Appendix 9B. Rouse motions in an entanglement strand. References -- 10. Comparison of theory and experiment in linear viscoelasticity and diffusion. 10.1. Effects of the molecular-weight distribution of the sample. 10.2. Analysis of the G(t) line shape. 10.3. Zero-shear viscosity and steady-state compliance. 10.4. Viscoelasticity and diffusion. References -- 11. Concentration dependence of entanglement, onset of entanglement, and tube dilation. 11.1. Introduction. 11.2. Entanglement region. 11.3. Entanglement-free region and onset of entanglement. 11.4. Tube dilation. Appendix 11A. Basic form of the blending law in a binary blend. References -- 12. Molecular theory of polymer viscoelasticity -- processes in the nonlinear relaxation modulus. 12.1. Chain-tension relaxation. 12.2. Comparison of theory and experiment. References -- 13. Number of entanglement strands per cubed entanglement distance. 13.1. Introduction. 13.2. Number of entanglement strands per cubed entanglement distance. 13.3. Concentration dependence of n[symbol]. 13.4. Packing of polymer chains. 13.5. Some comments. References -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book, the studies of the Rouse, Doi-Edwards, and extended reptation theories are developed in a consistent manner from a basic level and discussed in detail. Viscoelastic properties of nearly monodisperse linear flexible polymers in both the entanglement and entanglement-free regions are analyzed quantitatively in terms of the molecular theories</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Material Science</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymeren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visco-elasticiteit</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymers / Viscosity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscoelasticity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield><subfield code="x">Viscosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskoelastizität</subfield><subfield code="0">(DE-588)4063621-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Viskoelastizität</subfield><subfield code="0">(DE-588)4063621-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">981-238-417-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028557359</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043133168 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:27Z |
institution | BVB |
isbn | 9789812383945 9789812795144 9812383948 9812795146 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028557359 |
oclc_num | 262846990 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 251 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific |
record_format | marc |
spelling | Lin, Y.-H. Verfasser aut Polymer viscoelasticity basics, molecular theories, and experiments Yn-Hwang Lin Singapore World Scientific 2003 1 Online-Ressource (xii, 251 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Preface -- 1. Conformation of polymer chains. 1.1. Introduction. 1.2. Probability distribution functions, moments and characteristic functions. 1.3. A central limit theorem. 1.4. The freely jointed chain model. 1.5. Distribution of the end-to-end vector. 1.6. The Gaussian chain. Appendix 1A. The Dirac delta function. References -- 2. Rubber elasticity. 2.1. Introduction. 2.2. Entropy and rubber elasticity. 2.3. Molecular theory for rubber elasticity. References -- 3. Polymer chain dynamics. 3.1. Introduction. 3.2. The Smoluchowski equation. 3.3. The Langevin equation. 3.4. The Rouse model. 3.5. Diffusion motion of the Rouse chain. 3.6. The Rouse normal modes of motion. Appendix 3A. Eigenvalues and eigenvectors of the Rouse matrix. Appendix 3B. The Langevin equation of a particle in a harmonic potential. Appendix 3C. The continuous Rouse model. References -- - 4. Linear viscoelasticity. 4.1. Introduction. 4.2. Maxwell equation. 4.3. Boltzmann's superposition principle. 4.4. Relaxation modulus. 4.5. Steady-state shear flow. 4.6. Dynamic-mechanical spectroscopy. 4.7. Steady-state compliance. References -- 5. Stress and strain. 5.1. Stress. 5.2. Finite strain. 5.3. A neo-Hookean material. 5.4. A Newtonian fluid. Appendix 5A. Tensor operations. References -- 6. Molecular theory of polymer viscoelasticity -- elastic dumbbell model. 6.1. Introduction. 6.2. The Smoluchowski equation for an elastic dumbbell. 6.3. Rheological constitutive equation of the elastic dumbbell model. Appendix 6A. Codeformational (convected) time derivative. References -- 7. Molecular theory of polymer viscoelasticity -- the Rouse model . 7.1. The Smoluchowski equation of the Rouse model. 7.2. Rheological constitutive equation of the Rouse model. Appendix 7A. Eigenvalues and the inverse of the Rouse matrix. References -- 8. Molecular theory of polymer viscoelasticity -- - entanglement and the Doi-Edwards (reptation) model. 8.1. Introduction. 8.2. The primitive chain. 8.3. Diffusion motion. 8.4. Relaxation modulus. 8.5. Relaxation of stress by reputation. Appendix 8A. -- Tension in a gaussian chain between two fixed points. Appendix 8B. -- Equivalent expressions for rubber elasticity. References 9. Molecular theory of polymer viscoelasticity -- processes in the linear relaxation modulus. 9.1. Intramolecular processes. 9.2. Contour length fluctuation of the primitive chain. 9.3. Relaxation processes before t [symbol] Teq. 9.4. Universality of the G(t) line shape. 9.5. Zero-shear viscosity and steady-state compliance. Appendix 9A. Contour length fluctuations of the primitive chain. Appendix 9B. Rouse motions in an entanglement strand. References -- 10. Comparison of theory and experiment in linear viscoelasticity and diffusion. 10.1. Effects of the molecular-weight distribution of the sample. 10.2. Analysis of the G(t) line shape. 10.3. Zero-shear viscosity and steady-state compliance. 10.4. Viscoelasticity and diffusion. References -- 11. Concentration dependence of entanglement, onset of entanglement, and tube dilation. 11.1. Introduction. 11.2. Entanglement region. 11.3. Entanglement-free region and onset of entanglement. 11.4. Tube dilation. Appendix 11A. Basic form of the blending law in a binary blend. References -- 12. Molecular theory of polymer viscoelasticity -- processes in the nonlinear relaxation modulus. 12.1. Chain-tension relaxation. 12.2. Comparison of theory and experiment. References -- 13. Number of entanglement strands per cubed entanglement distance. 13.1. Introduction. 13.2. Number of entanglement strands per cubed entanglement distance. 13.3. Concentration dependence of n[symbol]. 13.4. Packing of polymer chains. 13.5. Some comments. References -- Index In this book, the studies of the Rouse, Doi-Edwards, and extended reptation theories are developed in a consistent manner from a basic level and discussed in detail. Viscoelastic properties of nearly monodisperse linear flexible polymers in both the entanglement and entanglement-free regions are analyzed quantitatively in terms of the molecular theories TECHNOLOGY & ENGINEERING / Material Science bisacsh Polymeren gtt Visco-elasticiteit gtt Polymers / Viscosity fast Viscoelasticity fast Polymers Viscosity Viscoelasticity Viskoelastizität (DE-588)4063621-5 gnd rswk-swf Polymere (DE-588)4046699-1 gnd rswk-swf Polymere (DE-588)4046699-1 s Viskoelastizität (DE-588)4063621-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Paperback 981-238-417-0 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lin, Y.-H Polymer viscoelasticity basics, molecular theories, and experiments TECHNOLOGY & ENGINEERING / Material Science bisacsh Polymeren gtt Visco-elasticiteit gtt Polymers / Viscosity fast Viscoelasticity fast Polymers Viscosity Viscoelasticity Viskoelastizität (DE-588)4063621-5 gnd Polymere (DE-588)4046699-1 gnd |
subject_GND | (DE-588)4063621-5 (DE-588)4046699-1 |
title | Polymer viscoelasticity basics, molecular theories, and experiments |
title_auth | Polymer viscoelasticity basics, molecular theories, and experiments |
title_exact_search | Polymer viscoelasticity basics, molecular theories, and experiments |
title_full | Polymer viscoelasticity basics, molecular theories, and experiments Yn-Hwang Lin |
title_fullStr | Polymer viscoelasticity basics, molecular theories, and experiments Yn-Hwang Lin |
title_full_unstemmed | Polymer viscoelasticity basics, molecular theories, and experiments Yn-Hwang Lin |
title_short | Polymer viscoelasticity |
title_sort | polymer viscoelasticity basics molecular theories and experiments |
title_sub | basics, molecular theories, and experiments |
topic | TECHNOLOGY & ENGINEERING / Material Science bisacsh Polymeren gtt Visco-elasticiteit gtt Polymers / Viscosity fast Viscoelasticity fast Polymers Viscosity Viscoelasticity Viskoelastizität (DE-588)4063621-5 gnd Polymere (DE-588)4046699-1 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Material Science Polymeren Visco-elasticiteit Polymers / Viscosity Viscoelasticity Polymers Viscosity Viskoelastizität Polymere |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235618 |
work_keys_str_mv | AT linyh polymerviscoelasticitybasicsmoleculartheoriesandexperiments |