Ring Interferometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
2013
|
Schriftenreihe: | De Gruyter studies in mathematical physics
13 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | 2.2.2.6 Nonreciprocal effects caused by nonlinear interaction between counterpropagating waves (optical Kerr effect) List of abbreviations; List of notations; 1 Introduction; 2 Fiber ring interferometry; 2.1 Sagnac effect. Correct and incorrect explanations; 2.1.1 Correct explanations of the Sagnac effect; 2.1.1.1 Sagnac effect in special relativity; 2.1.1.2 Sagnac effect in general relativity; 2.1.1.3 Methods for calculating the Sagnac phase shift in anisotropic media; 2.1.2 Conditionally correct explanations of the Sagnac effect 2.1.2.1 Sagnac effect due to the difference between the non-relativistic gravitational scalar potentials of centrifugal forces in reference frames moving with counterpropagating waves2.1.2.2 Sagnac effect due to the sign difference between the non-relativistic gravitational scalar potentials of Coriolis forces in reference frames moving with counterpropagating waves; 2.1.2.3 Quantum mechanical Sagnac effect due to the influence of the Coriolis force vector potential on the wave function phases of counterpropagating waves in rotating reference frames 2.1.3 Attempts to explain the Sagnac effect by analogy with other effects2.1.3.1 Analogy between the Sagnac and Aharonov-Bohm effects; 2.1.3.2 Sagnac effect as a manifestation of the Berry phase; 2.1.4 Incorrect explanations of the Sagnac effect; 2.1.4.1 Sagnac effect in the theory of a quiescent luminiferous ether; 2.1.4.2 Sagnac effect from the viewpoint of classical kinematics; 2.1.4.3 Sagnac effect as a manifestation of the classical Doppler effect from a moving splitter; 2.1.4.4 Sagnac effect as a manifestation of the Fresnel-Fizeau dragging effect 2.1.4.5 Sagnac effect and Coriolis forces2.1.4.6 Sagnac effect as a consequence of the difference between the orbital angularmomenta of photons in counterpropagating waves; 2.1.4.7 Sagnac effect as a manifestation of the inertial properties of an electromagnetic field; 2.1.4.8 Sagnac effect in incorrect theories of gravitation; 2.1.4.9 Other incorrect explanations of the Sagnac effect; 2.2 Physical problems of the fiber ring interferometry; 2.2.1 Milestones of the creation and development of optical ring interferometry and gyroscopy based on the Sagnac effect 2.2.2 Sources for additional nonreciprocity of fiber ring interferometers2.2.2.1 General characterization of sources for additional nonreciprocity of fiber ring interferometers; 2.2.2.2 Nonreciprocity as a consequence of the light source coherence; 2.2.2.3 Polarization nonreciprocity: causes and solutions; 2.2.2.4 Nonreciprocity caused by local variations in the gyro fiber-loop parameters due to variable acoustic, mechanical, and temperature actions; 2.2.2.5 Nonreciprocity due to the Faraday effect in external magnetic field This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connectionbetween polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practit |
Beschreibung: | 1 Online-Ressource (320 pages) |
ISBN: | 3110277921 9783110277920 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043133114 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 3110277921 |9 3-11-027792-1 | ||
020 | |a 9783110277920 |9 978-3-11-027792-0 | ||
035 | |a (OCoLC)858761700 | ||
035 | |a (DE-599)BVBBV043133114 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 681.2 | |
100 | 1 | |a Zhurov, Alexei |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ring Interferometry |
264 | 1 | |a Berlin |b De Gruyter |c 2013 | |
300 | |a 1 Online-Ressource (320 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter studies in mathematical physics |v 13 | |
500 | |a 2.2.2.6 Nonreciprocal effects caused by nonlinear interaction between counterpropagating waves (optical Kerr effect) | ||
500 | |a List of abbreviations; List of notations; 1 Introduction; 2 Fiber ring interferometry; 2.1 Sagnac effect. Correct and incorrect explanations; 2.1.1 Correct explanations of the Sagnac effect; 2.1.1.1 Sagnac effect in special relativity; 2.1.1.2 Sagnac effect in general relativity; 2.1.1.3 Methods for calculating the Sagnac phase shift in anisotropic media; 2.1.2 Conditionally correct explanations of the Sagnac effect | ||
500 | |a 2.1.2.1 Sagnac effect due to the difference between the non-relativistic gravitational scalar potentials of centrifugal forces in reference frames moving with counterpropagating waves2.1.2.2 Sagnac effect due to the sign difference between the non-relativistic gravitational scalar potentials of Coriolis forces in reference frames moving with counterpropagating waves; 2.1.2.3 Quantum mechanical Sagnac effect due to the influence of the Coriolis force vector potential on the wave function phases of counterpropagating waves in rotating reference frames | ||
500 | |a 2.1.3 Attempts to explain the Sagnac effect by analogy with other effects2.1.3.1 Analogy between the Sagnac and Aharonov-Bohm effects; 2.1.3.2 Sagnac effect as a manifestation of the Berry phase; 2.1.4 Incorrect explanations of the Sagnac effect; 2.1.4.1 Sagnac effect in the theory of a quiescent luminiferous ether; 2.1.4.2 Sagnac effect from the viewpoint of classical kinematics; 2.1.4.3 Sagnac effect as a manifestation of the classical Doppler effect from a moving splitter; 2.1.4.4 Sagnac effect as a manifestation of the Fresnel-Fizeau dragging effect | ||
500 | |a 2.1.4.5 Sagnac effect and Coriolis forces2.1.4.6 Sagnac effect as a consequence of the difference between the orbital angularmomenta of photons in counterpropagating waves; 2.1.4.7 Sagnac effect as a manifestation of the inertial properties of an electromagnetic field; 2.1.4.8 Sagnac effect in incorrect theories of gravitation; 2.1.4.9 Other incorrect explanations of the Sagnac effect; 2.2 Physical problems of the fiber ring interferometry; 2.2.1 Milestones of the creation and development of optical ring interferometry and gyroscopy based on the Sagnac effect | ||
500 | |a 2.2.2 Sources for additional nonreciprocity of fiber ring interferometers2.2.2.1 General characterization of sources for additional nonreciprocity of fiber ring interferometers; 2.2.2.2 Nonreciprocity as a consequence of the light source coherence; 2.2.2.3 Polarization nonreciprocity: causes and solutions; 2.2.2.4 Nonreciprocity caused by local variations in the gyro fiber-loop parameters due to variable acoustic, mechanical, and temperature actions; 2.2.2.5 Nonreciprocity due to the Faraday effect in external magnetic field | ||
500 | |a This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connectionbetween polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practit | ||
650 | 4 | |a Biosensors | |
650 | 4 | |a Interferometry | |
650 | 4 | |a Particles (Nuclear physics) / Diffraction | |
650 | 4 | |a Polarization (Nuclear physics) | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Sensors |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades |2 bisacsh | |
650 | 7 | |a Interferometry |2 fast | |
650 | 7 | |a Particles (Nuclear physics) / Diffraction |2 fast | |
650 | 7 | |a Polarization (Nuclear physics) |2 fast | |
650 | 4 | |a Interferometry | |
650 | 4 | |a Particles (Nuclear physics) |x Diffraction | |
650 | 4 | |a Polarization (Nuclear physics) | |
650 | 0 | 7 | |a Ringinterferometer |0 (DE-588)4221849-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faseroptisches Interferometer |0 (DE-588)4153759-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ringinterferometer |0 (DE-588)4221849-4 |D s |
689 | 0 | 1 | |a Faseroptisches Interferometer |0 (DE-588)4153759-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Malykin, Grigorii B. |e Sonstige |4 oth | |
700 | 1 | |a Pozdnyakova, Vera I. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028557305 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175574421209088 |
---|---|
any_adam_object | |
author | Zhurov, Alexei |
author_facet | Zhurov, Alexei |
author_role | aut |
author_sort | Zhurov, Alexei |
author_variant | a z az |
building | Verbundindex |
bvnumber | BV043133114 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)858761700 (DE-599)BVBBV043133114 |
dewey-full | 681.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681.2 |
dewey-search | 681.2 |
dewey-sort | 3681.2 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05866nmm a2200661zcb4500</leader><controlfield tag="001">BV043133114</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110277921</subfield><subfield code="9">3-11-027792-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110277920</subfield><subfield code="9">978-3-11-027792-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858761700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043133114</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681.2</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhurov, Alexei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ring Interferometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (320 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter studies in mathematical physics</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2.2.6 Nonreciprocal effects caused by nonlinear interaction between counterpropagating waves (optical Kerr effect)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">List of abbreviations; List of notations; 1 Introduction; 2 Fiber ring interferometry; 2.1 Sagnac effect. Correct and incorrect explanations; 2.1.1 Correct explanations of the Sagnac effect; 2.1.1.1 Sagnac effect in special relativity; 2.1.1.2 Sagnac effect in general relativity; 2.1.1.3 Methods for calculating the Sagnac phase shift in anisotropic media; 2.1.2 Conditionally correct explanations of the Sagnac effect</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1.2.1 Sagnac effect due to the difference between the non-relativistic gravitational scalar potentials of centrifugal forces in reference frames moving with counterpropagating waves2.1.2.2 Sagnac effect due to the sign difference between the non-relativistic gravitational scalar potentials of Coriolis forces in reference frames moving with counterpropagating waves; 2.1.2.3 Quantum mechanical Sagnac effect due to the influence of the Coriolis force vector potential on the wave function phases of counterpropagating waves in rotating reference frames</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1.3 Attempts to explain the Sagnac effect by analogy with other effects2.1.3.1 Analogy between the Sagnac and Aharonov-Bohm effects; 2.1.3.2 Sagnac effect as a manifestation of the Berry phase; 2.1.4 Incorrect explanations of the Sagnac effect; 2.1.4.1 Sagnac effect in the theory of a quiescent luminiferous ether; 2.1.4.2 Sagnac effect from the viewpoint of classical kinematics; 2.1.4.3 Sagnac effect as a manifestation of the classical Doppler effect from a moving splitter; 2.1.4.4 Sagnac effect as a manifestation of the Fresnel-Fizeau dragging effect</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1.4.5 Sagnac effect and Coriolis forces2.1.4.6 Sagnac effect as a consequence of the difference between the orbital angularmomenta of photons in counterpropagating waves; 2.1.4.7 Sagnac effect as a manifestation of the inertial properties of an electromagnetic field; 2.1.4.8 Sagnac effect in incorrect theories of gravitation; 2.1.4.9 Other incorrect explanations of the Sagnac effect; 2.2 Physical problems of the fiber ring interferometry; 2.2.1 Milestones of the creation and development of optical ring interferometry and gyroscopy based on the Sagnac effect</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2.2 Sources for additional nonreciprocity of fiber ring interferometers2.2.2.1 General characterization of sources for additional nonreciprocity of fiber ring interferometers; 2.2.2.2 Nonreciprocity as a consequence of the light source coherence; 2.2.2.3 Polarization nonreciprocity: causes and solutions; 2.2.2.4 Nonreciprocity caused by local variations in the gyro fiber-loop parameters due to variable acoustic, mechanical, and temperature actions; 2.2.2.5 Nonreciprocity due to the Faraday effect in external magnetic field</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connectionbetween polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particles (Nuclear physics) / Diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polarization (Nuclear physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Sensors</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interferometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Particles (Nuclear physics) / Diffraction</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polarization (Nuclear physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particles (Nuclear physics)</subfield><subfield code="x">Diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polarization (Nuclear physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringinterferometer</subfield><subfield code="0">(DE-588)4221849-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faseroptisches Interferometer</subfield><subfield code="0">(DE-588)4153759-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ringinterferometer</subfield><subfield code="0">(DE-588)4221849-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Faseroptisches Interferometer</subfield><subfield code="0">(DE-588)4153759-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malykin, Grigorii B.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pozdnyakova, Vera I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028557305</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043133114 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:27Z |
institution | BVB |
isbn | 3110277921 9783110277920 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028557305 |
oclc_num | 858761700 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (320 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter studies in mathematical physics |
spelling | Zhurov, Alexei Verfasser aut Ring Interferometry Berlin De Gruyter 2013 1 Online-Ressource (320 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematical physics 13 2.2.2.6 Nonreciprocal effects caused by nonlinear interaction between counterpropagating waves (optical Kerr effect) List of abbreviations; List of notations; 1 Introduction; 2 Fiber ring interferometry; 2.1 Sagnac effect. Correct and incorrect explanations; 2.1.1 Correct explanations of the Sagnac effect; 2.1.1.1 Sagnac effect in special relativity; 2.1.1.2 Sagnac effect in general relativity; 2.1.1.3 Methods for calculating the Sagnac phase shift in anisotropic media; 2.1.2 Conditionally correct explanations of the Sagnac effect 2.1.2.1 Sagnac effect due to the difference between the non-relativistic gravitational scalar potentials of centrifugal forces in reference frames moving with counterpropagating waves2.1.2.2 Sagnac effect due to the sign difference between the non-relativistic gravitational scalar potentials of Coriolis forces in reference frames moving with counterpropagating waves; 2.1.2.3 Quantum mechanical Sagnac effect due to the influence of the Coriolis force vector potential on the wave function phases of counterpropagating waves in rotating reference frames 2.1.3 Attempts to explain the Sagnac effect by analogy with other effects2.1.3.1 Analogy between the Sagnac and Aharonov-Bohm effects; 2.1.3.2 Sagnac effect as a manifestation of the Berry phase; 2.1.4 Incorrect explanations of the Sagnac effect; 2.1.4.1 Sagnac effect in the theory of a quiescent luminiferous ether; 2.1.4.2 Sagnac effect from the viewpoint of classical kinematics; 2.1.4.3 Sagnac effect as a manifestation of the classical Doppler effect from a moving splitter; 2.1.4.4 Sagnac effect as a manifestation of the Fresnel-Fizeau dragging effect 2.1.4.5 Sagnac effect and Coriolis forces2.1.4.6 Sagnac effect as a consequence of the difference between the orbital angularmomenta of photons in counterpropagating waves; 2.1.4.7 Sagnac effect as a manifestation of the inertial properties of an electromagnetic field; 2.1.4.8 Sagnac effect in incorrect theories of gravitation; 2.1.4.9 Other incorrect explanations of the Sagnac effect; 2.2 Physical problems of the fiber ring interferometry; 2.2.1 Milestones of the creation and development of optical ring interferometry and gyroscopy based on the Sagnac effect 2.2.2 Sources for additional nonreciprocity of fiber ring interferometers2.2.2.1 General characterization of sources for additional nonreciprocity of fiber ring interferometers; 2.2.2.2 Nonreciprocity as a consequence of the light source coherence; 2.2.2.3 Polarization nonreciprocity: causes and solutions; 2.2.2.4 Nonreciprocity caused by local variations in the gyro fiber-loop parameters due to variable acoustic, mechanical, and temperature actions; 2.2.2.5 Nonreciprocity due to the Faraday effect in external magnetic field This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connectionbetween polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practit Biosensors Interferometry Particles (Nuclear physics) / Diffraction Polarization (Nuclear physics) TECHNOLOGY & ENGINEERING / Sensors bisacsh TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades bisacsh Interferometry fast Particles (Nuclear physics) / Diffraction fast Polarization (Nuclear physics) fast Particles (Nuclear physics) Diffraction Ringinterferometer (DE-588)4221849-4 gnd rswk-swf Faseroptisches Interferometer (DE-588)4153759-2 gnd rswk-swf Ringinterferometer (DE-588)4221849-4 s Faseroptisches Interferometer (DE-588)4153759-2 s 1\p DE-604 Malykin, Grigorii B. Sonstige oth Pozdnyakova, Vera I. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zhurov, Alexei Ring Interferometry Biosensors Interferometry Particles (Nuclear physics) / Diffraction Polarization (Nuclear physics) TECHNOLOGY & ENGINEERING / Sensors bisacsh TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades bisacsh Interferometry fast Particles (Nuclear physics) / Diffraction fast Polarization (Nuclear physics) fast Particles (Nuclear physics) Diffraction Ringinterferometer (DE-588)4221849-4 gnd Faseroptisches Interferometer (DE-588)4153759-2 gnd |
subject_GND | (DE-588)4221849-4 (DE-588)4153759-2 |
title | Ring Interferometry |
title_auth | Ring Interferometry |
title_exact_search | Ring Interferometry |
title_full | Ring Interferometry |
title_fullStr | Ring Interferometry |
title_full_unstemmed | Ring Interferometry |
title_short | Ring Interferometry |
title_sort | ring interferometry |
topic | Biosensors Interferometry Particles (Nuclear physics) / Diffraction Polarization (Nuclear physics) TECHNOLOGY & ENGINEERING / Sensors bisacsh TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades bisacsh Interferometry fast Particles (Nuclear physics) / Diffraction fast Polarization (Nuclear physics) fast Particles (Nuclear physics) Diffraction Ringinterferometer (DE-588)4221849-4 gnd Faseroptisches Interferometer (DE-588)4153759-2 gnd |
topic_facet | Biosensors Interferometry Particles (Nuclear physics) / Diffraction Polarization (Nuclear physics) TECHNOLOGY & ENGINEERING / Sensors TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades Particles (Nuclear physics) Diffraction Ringinterferometer Faseroptisches Interferometer |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641750 |
work_keys_str_mv | AT zhurovalexei ringinterferometry AT malykingrigoriib ringinterferometry AT pozdnyakovaverai ringinterferometry |