From quantum cohomology to integrable systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2008
|
Schriftenreihe: | Oxford graduate texts in mathematics
15 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio |
Beschreibung: | 1 Online-Ressource (xxix, 305 p.) |
ISBN: | 0191524123 9780191524127 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043129700 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 0191524123 |c electronic bk. |9 0-19-152412-3 | ||
020 | |a 9780191524127 |c electronic bk. |9 978-0-19-152412-7 | ||
035 | |a (OCoLC)236393392 | ||
035 | |a (DE-599)BVBBV043129700 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514/.23 |2 22 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Guest, Martin A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a From quantum cohomology to integrable systems |c Martin A. Guest |
264 | 1 | |a Oxford |b Oxford University Press |c 2008 | |
300 | |a 1 Online-Ressource (xxix, 305 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Oxford graduate texts in mathematics |v 15 | |
500 | |a Includes bibliographical references and index | ||
500 | |a Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index | ||
500 | |a This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio | ||
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Homology theory |2 fast | |
650 | 7 | |a Mappings (Mathematics) |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Mappings (Mathematics) | |
650 | 0 | 7 | |a Quantenkohomologie |0 (DE-588)4684891-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenkohomologie |0 (DE-588)4684891-5 |D s |
689 | 0 | 1 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-19-856599-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-19-856599-4 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028553891 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175567727099904 |
---|---|
any_adam_object | |
author | Guest, Martin A. |
author_facet | Guest, Martin A. |
author_role | aut |
author_sort | Guest, Martin A. |
author_variant | m a g ma mag |
building | Verbundindex |
bvnumber | BV043129700 |
classification_rvk | SK 240 SK 320 SK 540 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)236393392 (DE-599)BVBBV043129700 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03530nmm a2200625zcb4500</leader><controlfield tag="001">BV043129700</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191524123</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-19-152412-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191524127</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-19-152412-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)236393392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043129700</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guest, Martin A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From quantum cohomology to integrable systems</subfield><subfield code="c">Martin A. Guest</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxix, 305 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford graduate texts in mathematics</subfield><subfield code="v">15</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mappings (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mappings (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenkohomologie</subfield><subfield code="0">(DE-588)4684891-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenkohomologie</subfield><subfield code="0">(DE-588)4684891-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-19-856599-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-19-856599-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028553891</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043129700 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:21Z |
institution | BVB |
isbn | 0191524123 9780191524127 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028553891 |
oclc_num | 236393392 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxix, 305 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Oxford University Press |
record_format | marc |
series2 | Oxford graduate texts in mathematics |
spelling | Guest, Martin A. Verfasser aut From quantum cohomology to integrable systems Martin A. Guest Oxford Oxford University Press 2008 1 Online-Ressource (xxix, 305 p.) txt rdacontent c rdamedia cr rdacarrier Oxford graduate texts in mathematics 15 Includes bibliographical references and index Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio MATHEMATICS / Topology bisacsh Differential equations fast Homology theory fast Mappings (Mathematics) fast Quantum theory fast Quantentheorie Homology theory Quantum theory Differential equations Mappings (Mathematics) Quantenkohomologie (DE-588)4684891-5 gnd rswk-swf Integrables System (DE-588)4114032-1 gnd rswk-swf Quantenkohomologie (DE-588)4684891-5 s Integrables System (DE-588)4114032-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 0-19-856599-2 Erscheint auch als Druck-Ausgabe, Paperback 978-0-19-856599-4 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Guest, Martin A. From quantum cohomology to integrable systems MATHEMATICS / Topology bisacsh Differential equations fast Homology theory fast Mappings (Mathematics) fast Quantum theory fast Quantentheorie Homology theory Quantum theory Differential equations Mappings (Mathematics) Quantenkohomologie (DE-588)4684891-5 gnd Integrables System (DE-588)4114032-1 gnd |
subject_GND | (DE-588)4684891-5 (DE-588)4114032-1 |
title | From quantum cohomology to integrable systems |
title_auth | From quantum cohomology to integrable systems |
title_exact_search | From quantum cohomology to integrable systems |
title_full | From quantum cohomology to integrable systems Martin A. Guest |
title_fullStr | From quantum cohomology to integrable systems Martin A. Guest |
title_full_unstemmed | From quantum cohomology to integrable systems Martin A. Guest |
title_short | From quantum cohomology to integrable systems |
title_sort | from quantum cohomology to integrable systems |
topic | MATHEMATICS / Topology bisacsh Differential equations fast Homology theory fast Mappings (Mathematics) fast Quantum theory fast Quantentheorie Homology theory Quantum theory Differential equations Mappings (Mathematics) Quantenkohomologie (DE-588)4684891-5 gnd Integrables System (DE-588)4114032-1 gnd |
topic_facet | MATHEMATICS / Topology Differential equations Homology theory Mappings (Mathematics) Quantum theory Quantentheorie Quantenkohomologie Integrables System |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=218111 |
work_keys_str_mv | AT guestmartina fromquantumcohomologytointegrablesystems |