Blow up in nonlinear Sobolev type equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
©2011
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications
15 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 621-646) and index The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature |
Beschreibung: | 1 Online-Ressource (xii, 648 pages) |
ISBN: | 1283166828 3110255278 3110255294 9781283166829 9783110255270 9783110255294 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043128825 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 1283166828 |9 1-283-16682-8 | ||
020 | |a 3110255278 |9 3-11-025527-8 | ||
020 | |a 3110255294 |c electronic bk. |9 3-11-025529-4 | ||
020 | |a 9781283166829 |9 978-1-283-16682-9 | ||
020 | |a 9783110255270 |9 978-3-11-025527-0 | ||
020 | |a 9783110255294 |c electronic bk. |9 978-3-11-025529-4 | ||
035 | |a (OCoLC)749781836 | ||
035 | |a (DE-599)BVBBV043128825 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.782 |2 22 | |
100 | 1 | |a Alʹshin, A. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Blow up in nonlinear Sobolev type equations |c Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov |
264 | 1 | |a Berlin |b De Gruyter |c ©2011 | |
300 | |a 1 Online-Ressource (xii, 648 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in nonlinear analysis and applications |v 15 | |
500 | |a Includes bibliographical references (pages 621-646) and index | ||
500 | |a The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature | ||
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a Initial value problems / Numerical solutions |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Nonlinear difference equations |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Initial value problems |x Numerical solutions | |
650 | 4 | |a Nonlinear difference equations | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Pseudoparabolische Differentialgleichung |0 (DE-588)4176155-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Blowing up |0 (DE-588)4508027-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pseudoparabolische Differentialgleichung |0 (DE-588)4176155-8 |D s |
689 | 0 | 1 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |D s |
689 | 0 | 2 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 0 | 3 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |D s |
689 | 0 | 4 | |a Blowing up |0 (DE-588)4508027-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Korpusov, M. O. |e Sonstige |4 oth | |
700 | 1 | |a Sveshnikov, A. G. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028553016 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175566029455361 |
---|---|
any_adam_object | |
author | Alʹshin, A. B. |
author_facet | Alʹshin, A. B. |
author_role | aut |
author_sort | Alʹshin, A. B. |
author_variant | a b a ab aba |
building | Verbundindex |
bvnumber | BV043128825 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)749781836 (DE-599)BVBBV043128825 |
dewey-full | 515/.782 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.782 |
dewey-search | 515/.782 |
dewey-sort | 3515 3782 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04004nmm a2200673zcb4500</leader><controlfield tag="001">BV043128825</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283166828</subfield><subfield code="9">1-283-16682-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110255278</subfield><subfield code="9">3-11-025527-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110255294</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-025529-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283166829</subfield><subfield code="9">978-1-283-16682-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110255270</subfield><subfield code="9">978-3-11-025527-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110255294</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-025529-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)749781836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043128825</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.782</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alʹshin, A. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blow up in nonlinear Sobolev type equations</subfield><subfield code="c">Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">©2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 648 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">15</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 621-646) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Initial value problems / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear difference equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudoparabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4176155-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudoparabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4176155-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korpusov, M. O.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sveshnikov, A. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028553016</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043128825 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:19Z |
institution | BVB |
isbn | 1283166828 3110255278 3110255294 9781283166829 9783110255270 9783110255294 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028553016 |
oclc_num | 749781836 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 648 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter series in nonlinear analysis and applications |
spelling | Alʹshin, A. B. Verfasser aut Blow up in nonlinear Sobolev type equations Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov Berlin De Gruyter ©2011 1 Online-Ressource (xii, 648 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter series in nonlinear analysis and applications 15 Includes bibliographical references (pages 621-646) and index The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature MATHEMATICS / Functional Analysis bisacsh Initial value problems / Numerical solutions fast Mathematical physics fast Nonlinear difference equations fast Mathematische Physik Initial value problems Numerical solutions Nonlinear difference equations Mathematical physics Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd rswk-swf Lösung Mathematik (DE-588)4120678-2 gnd rswk-swf Blowing up (DE-588)4508027-6 gnd rswk-swf Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd rswk-swf Anfangsrandwertproblem (DE-588)4001990-1 gnd rswk-swf Pseudoparabolische Differentialgleichung (DE-588)4176155-8 s Cauchy-Anfangswertproblem (DE-588)4147404-1 s Anfangsrandwertproblem (DE-588)4001990-1 s Lösung Mathematik (DE-588)4120678-2 s Blowing up (DE-588)4508027-6 s 1\p DE-604 Korpusov, M. O. Sonstige oth Sveshnikov, A. G. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Alʹshin, A. B. Blow up in nonlinear Sobolev type equations MATHEMATICS / Functional Analysis bisacsh Initial value problems / Numerical solutions fast Mathematical physics fast Nonlinear difference equations fast Mathematische Physik Initial value problems Numerical solutions Nonlinear difference equations Mathematical physics Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd Lösung Mathematik (DE-588)4120678-2 gnd Blowing up (DE-588)4508027-6 gnd Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd |
subject_GND | (DE-588)4176155-8 (DE-588)4120678-2 (DE-588)4508027-6 (DE-588)4147404-1 (DE-588)4001990-1 |
title | Blow up in nonlinear Sobolev type equations |
title_auth | Blow up in nonlinear Sobolev type equations |
title_exact_search | Blow up in nonlinear Sobolev type equations |
title_full | Blow up in nonlinear Sobolev type equations Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov |
title_fullStr | Blow up in nonlinear Sobolev type equations Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov |
title_full_unstemmed | Blow up in nonlinear Sobolev type equations Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov |
title_short | Blow up in nonlinear Sobolev type equations |
title_sort | blow up in nonlinear sobolev type equations |
topic | MATHEMATICS / Functional Analysis bisacsh Initial value problems / Numerical solutions fast Mathematical physics fast Nonlinear difference equations fast Mathematische Physik Initial value problems Numerical solutions Nonlinear difference equations Mathematical physics Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd Lösung Mathematik (DE-588)4120678-2 gnd Blowing up (DE-588)4508027-6 gnd Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd |
topic_facet | MATHEMATICS / Functional Analysis Initial value problems / Numerical solutions Mathematical physics Nonlinear difference equations Mathematische Physik Initial value problems Numerical solutions Pseudoparabolische Differentialgleichung Lösung Mathematik Blowing up Cauchy-Anfangswertproblem Anfangsrandwertproblem |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388294 |
work_keys_str_mv | AT alʹshinab blowupinnonlinearsobolevtypeequations AT korpusovmo blowupinnonlinearsobolevtypeequations AT sveshnikovag blowupinnonlinearsobolevtypeequations |