Value solutions in cooperative games:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ
World Scientific Pub.
c2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (p.) |
ISBN: | 9789814417402 9814417408 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043128174 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814417402 |c electronic bk. |9 978-981-4417-40-2 | ||
020 | |a 9814417408 |c electronic bk. |9 981-4417-40-8 | ||
035 | |a (OCoLC)839388513 | ||
035 | |a (DE-599)BVBBV043128174 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.3 |2 23 | |
084 | |a QH 430 |0 (DE-625)141581: |2 rvk | ||
100 | 1 | |a McCain, Roger A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Value solutions in cooperative games |c by Roger A McCain |
264 | 1 | |a Hackensack, NJ |b World Scientific Pub. |c c2013 | |
300 | |a 1 Online-Ressource (p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise | ||
500 | |a This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered | ||
500 | |a Includes bibliographical references and index | ||
650 | 7 | |a MATHEMATICS / Game Theory |2 bisacsh | |
650 | 4 | |a Cooperative games (Mathematics) | |
650 | 4 | |a Game theory | |
650 | 4 | |a Values | |
650 | 0 | 7 | |a Spieltheorie |0 (DE-588)4056243-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Shapley-Lösung |0 (DE-588)4408694-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kooperatives Spiel |0 (DE-588)4120603-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kooperatives Spiel |0 (DE-588)4120603-4 |D s |
689 | 0 | 1 | |a Shapley-Lösung |0 (DE-588)4408694-5 |D s |
689 | 0 | 2 | |a Spieltheorie |0 (DE-588)4056243-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-981-4417-39-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 981-4417-39-4 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028552364 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175564725026816 |
---|---|
any_adam_object | |
author | McCain, Roger A. |
author_facet | McCain, Roger A. |
author_role | aut |
author_sort | McCain, Roger A. |
author_variant | r a m ra ram |
building | Verbundindex |
bvnumber | BV043128174 |
classification_rvk | QH 430 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)839388513 (DE-599)BVBBV043128174 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03512nmm a2200541zc 4500</leader><controlfield tag="001">BV043128174</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814417402</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4417-40-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814417408</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4417-40-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839388513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043128174</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 430</subfield><subfield code="0">(DE-625)141581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCain, Roger A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Value solutions in cooperative games</subfield><subfield code="c">by Roger A McCain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, NJ</subfield><subfield code="b">World Scientific Pub.</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Game Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooperative games (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Values</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Shapley-Lösung</subfield><subfield code="0">(DE-588)4408694-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kooperatives Spiel</subfield><subfield code="0">(DE-588)4120603-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kooperatives Spiel</subfield><subfield code="0">(DE-588)4120603-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Shapley-Lösung</subfield><subfield code="0">(DE-588)4408694-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-981-4417-39-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">981-4417-39-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028552364</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043128174 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:18Z |
institution | BVB |
isbn | 9789814417402 9814417408 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028552364 |
oclc_num | 839388513 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. |
record_format | marc |
spelling | McCain, Roger A. Verfasser aut Value solutions in cooperative games by Roger A McCain Hackensack, NJ World Scientific Pub. c2013 1 Online-Ressource (p.) txt rdacontent c rdamedia cr rdacarrier Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered Includes bibliographical references and index MATHEMATICS / Game Theory bisacsh Cooperative games (Mathematics) Game theory Values Spieltheorie (DE-588)4056243-8 gnd rswk-swf Shapley-Lösung (DE-588)4408694-5 gnd rswk-swf Kooperatives Spiel (DE-588)4120603-4 gnd rswk-swf Kooperatives Spiel (DE-588)4120603-4 s Shapley-Lösung (DE-588)4408694-5 s Spieltheorie (DE-588)4056243-8 s 1\p DE-604 Erscheint auch als Druckausgabe 978-981-4417-39-6 Erscheint auch als Druckausgabe 981-4417-39-4 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | McCain, Roger A. Value solutions in cooperative games MATHEMATICS / Game Theory bisacsh Cooperative games (Mathematics) Game theory Values Spieltheorie (DE-588)4056243-8 gnd Shapley-Lösung (DE-588)4408694-5 gnd Kooperatives Spiel (DE-588)4120603-4 gnd |
subject_GND | (DE-588)4056243-8 (DE-588)4408694-5 (DE-588)4120603-4 |
title | Value solutions in cooperative games |
title_auth | Value solutions in cooperative games |
title_exact_search | Value solutions in cooperative games |
title_full | Value solutions in cooperative games by Roger A McCain |
title_fullStr | Value solutions in cooperative games by Roger A McCain |
title_full_unstemmed | Value solutions in cooperative games by Roger A McCain |
title_short | Value solutions in cooperative games |
title_sort | value solutions in cooperative games |
topic | MATHEMATICS / Game Theory bisacsh Cooperative games (Mathematics) Game theory Values Spieltheorie (DE-588)4056243-8 gnd Shapley-Lösung (DE-588)4408694-5 gnd Kooperatives Spiel (DE-588)4120603-4 gnd |
topic_facet | MATHEMATICS / Game Theory Cooperative games (Mathematics) Game theory Values Spieltheorie Shapley-Lösung Kooperatives Spiel |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564522 |
work_keys_str_mv | AT mccainrogera valuesolutionsincooperativegames |